

ENGINEERING AND CONSULTING SINCE 1974

Stormwater Management Report

for **Bulk Yard 35** Borough of Sayreville, Middlesex County, New Jersey

Prepared for:

Brian Burlew Bulk Yard 35 Landscape & Masonry Supply 2069 Highway 35 South Amboy, NJ 08879

Jelena Balorad-Barone, PE NJ License No. 44465 June 2, 2023 | FPA No. 18937.001 Last Revised December 18, 2023 1800 Route 34, Suite 101, Wall Township, NJ 07719

TABLE OF CONTENTS

1.0	INTRO	DUCTION	.1		
2.0	BASIS	OF ENGINEERING ANALYSIS	.1		
3.0	EXISTING CONDITIONS				
4.0	PROPOSED CONDITIONS				
5.0	COMPLIANCE				
	5.1	Groundwater Recharge	.3		
	5.2	Water Quality	.4		
	5.3 Wa	ter Quantity	.4		
	5.4	Groundwater Mounding	.5		
	5.5	Soil Erosion and Sediment Control	.7		
6.0	CONCLUSION				

Appendix A

Supporting Documents

- NRCS Soils Map
- NJ 24 Hour Rainfall Frequency Data

Appendix B

Present Conditions Runoff Calculations

- Time of Concentration Calculations
- Approved Site Plan Stormwater Calculations

Appendix C

Proposed Conditions Calculations

- Proposed Conditions Runoff Calculations
- Basin Volume Calculations
- Scour Hole Calculations
- Groundwater Mounding
- Water Quality Calculations and MTD Sizing
- Pipe Sizing Calculations

Appendix D

Drainage Area Maps

1.0 INTRODUCTION

This report contains the stormwater management calculations demonstrating compliance with the requirements of the Stormwater Management Rules at N.J.A.C. 7:8 for the existing Bulk Yard 35 Landscape & Masonry Supply on Block 428, Lots 1, 2, and 2.01. The project consists of the removal of an existing single family dwelling, the construction of a new 2,250 sf pole barn and the relocation of decorative stone bins. The improvements include new parking spaces, stormwater management and landscaping.

2.0 BASIS OF ENGINEERING ANALYSIS

The stormwater management systems, including collection and conveyance structures, groundwater recharge, water quality, and detention measures (BMP'S) have been designed in accordance with the provisions outlined in N.J.A.C. 7:8 New Jersey Stormwater Management Rules and the Sayreville Stormwater Control Ordinance. The New Jersey Best Management Practices Manual dated April 2004 and last updated March 2021 was used for technical guidance to comply with the above regulations.

The soils map located in Appendix A, published by Natural Resources Conservation Service Web Soil Survey, National Cooperative Soil Survey, was used to obtain the required soil information for the project, including soil types and hydrologic soil groups. A subsurface soil assessment was performed to obtain site specific information to determine the seasonal high water table and on-site soil permeability conditions. Refer to the report entitled "Results of Subsurface Exploration, Permeability Testing & Geotechnical Assessment" dated April 26, 2023 prepared by French and Parrello Associates for documentation.

The calculation of the stormwater runoff rates and volumes were performed utilizing the procedures outlined in the New Jersey Best Management Practices Manual. The PondPack Connect Edition Update 2 Computer Program developed by the Haested Methods was used to generate the runoff hydrographs and hydrologic model for project site. Peak discharges, run-off volumes, and hydrographs were computed for the 2, 10 and 100-year storm events utilizing the USDA Natural Resources Conservation Service (NRCS) methodology, as found in the NRCS National Engineering Handbook, Part 630-Hydrology. The NOAA Type D, 24-hour rainfall distribution, and 24-hour rainfall frequency data for Middlesex County, New Jersey published in August 2012 by NRCS were used in the computations. Runoff calculations and precipitation losses were calculated using the NRCS Curve Numbers (CNs), based upon the present and proposed watershed conditions. Times of Concentration (TC) were based upon estimates of overland, shallow concentrated, and open channel flow utilizing methods presented in Chapter 15 of the NEH, Part 630-Hydrology.

The rainfall distribution for the NJDEP Water Quality Design Storm (1.25 inches of rain falling nonuniformly in a 2-hour storm event), as shown on Table 5-2 of the New Jersey Stormwater Best Management Practices Manual was used to compute the peak runoff rate and runoff volume for this storm.

3.0 EXISTING CONDITIONS

The subject property consists of 1.977 acres and is located in the Borough of Sayreville, Middlesex County, New Jersey. The property is known as Block 428, Lots 1,2, and 2.01. The site currently contains a 1 story shop and storage area, a 2½ story frame dwelling, a frame garage, and 18 material storage bins. The property fronts on New Jersey State Highway Route 35 to the northeast, residential lots to the south, preserved land to the southeast and commercial property to the northwest. Stormwater drains to an existing underground basin to the southern edge of the site, where it discharges to a rip rap apron at the southern corner.

The existing basin was shown on the plans entitled "Site Plan for Applied Landscape Technologies" prepared by James E. Cleary & Associates, Inc. dated July 2000, last revised July 25, 2001. The existing basin was approved for 44.8% impervious surface on the property. The site was further developed over the years and together with the proposed development increases the impervious area to 81.6% of the site. The proposed stormwater management system controls the stormwater to meet the peak runoff from the approved conditions.

The following table summarizes the approved conditions, peak runoff rates and establishes the allowable proposed conditions peak runoff rates. Since a stormwater management report for the original design in 2000 is not available, calculations were performed using above referenced plans to determine the "existing and allowable" conditions, based on the approved plans. The peak flow reductions were applied to the area that was previously approved as pervious and converted to impervious. The total approved peak runoff for the pervious area that was approved that is proposed impervious and presented in Table 3.1 Column C. The Reduction required (Column D) is only applied to the proposed building (Column C).

The following table summarizes the existing conditions, peak runoff rates and establishes the allowable proposed conditions peak runoff rates in accordance with N.J.A.C. 7:8 New Jersey Stormwater Management Rules. The formula describes how the allowable peak runoff rates were calculated to incorporate areas with and without required reductions. Detailed calculations are presented in Appendix B of this report.

Allowable Proposed Conditions Runoff	=	Portion of Approved Peak Runoff with no Required Reduction		+ Peak Flow generated by Portion of Project to be disturbed		*	Required Reduction per Storm event
F	=	E	+		С	*	D

Table 3.1

Summary of Present Conditions Peak Runoff Rates POA-A								
Α	В	С	D	E	F			
Storm Frequency	Total Approved Peak Runoff (cfs)	Portion of Peak Runoff to be Reduced	Required Reduction	Portion of Peak runoff with no required reduction	Allowable Proposed Conditions Runoff (cfs)			
2-Year	2.70	0.31	50%	2.70-0.31=2.31	2.31+(0.50*0.31) = 2.55			
10-Year	5.22	1.15	75%	5.22-1.15=4.07	4.07+(0.75*1.15) = 4.93			
25-Year	7.16				7.21			
100-Year	10.98	3.32	80%	10.98-3.32=7.66	7.66+ (0.80*3.32) = 10.32			

4.0 PROPOSED CONDITIONS

The proposed stormwater management facility for the site consists of a subsurface infiltration basin to address the water quantity reductions and water quality requirements. The infiltration basin includes 224 linear feet of 902 HD Recharger units by Cultec to manage the 2, 10, and 100-year storm events. The existing basin will be maintained.

5.0 COMPLIANCE

5.1 Groundwater Recharge

N.J.A.C. 7:8 New Jersey Stormwater Management Rules requires that the proposed project maintain the present conditions average annual groundwater recharge volume for the site. The

project site is located in a Metropolitan Planning Area (PA 1) and is therefore considered an urban redevelopment area and groundwater recharge is not required.

5.2 Water Quality

N.J.A.C. 7:8 New Jersey Stormwater Management Rules requires that an 80% reduction of total suspended solids (TSS) must be achieved if the net increase in regulated motor vehicle surface is more than 0.25 acres. There were 0.172 acres of motor vehicle surface approved in 2000. The current proposal is for a total of 0.615 acres of motor vehicle surface. The net increase in motor vehicle surface is 0.443 acres. Therefore, water quality must be addressed. 80% TSS removal will be achieved through the infiltration basin. A manufactured treatment device at the inflow to the basin is proposed to provide pre-treatment. The proposed peak flow rate for the water quality storm routed through the manufactured treatment device is 1.68 cfs. The manufactured treatment device selected for the pre-treatment has a max allowable treated flow rate of 1.93 cfs. This will treat 0.483 acres of motor vehicle surface. The second inflow location is roof runoff, and not required to be treated for TSS. Therefore, the project complies with the Water Quality requirements of N.J.A.C. 7:8 New Jersey Stormwater Management Rules. Water quality calculations and manufactured treatment device specifications are located in Appendix C of this report.

5.3 Water Quantity

For this project, the peak runoff rates for the 2-year, 10-year, and 100-year storm events were compared to the approved site plan conditions. The proposed stormwater management facilities consist of subsurface infiltration basin with Cultec Recharger 902 HD to manage the control and reductions of the 2, 10, and 100-year storm events.

The basin routing summary and the overall peak runoff rate reductions for the site are shown in the following tables:

Table	5.1
-------	-----

Subsurface Infiltration Basin Routing Summary							
Storm Frequency	Peak Inflow (cfs)	Peak Outflow (cfs)	Maximum Water Surface Elevation (ft)				
2-Year Storm	2.42	0.25	104.21				
10-Year Storm	3.91	1.35	105.01				
25-Year Storm	4.98	1.86	105.72				
100-Year Storm	6.96	2.70	107.36				

Table 5	5.2
---------	-----

Comparison of Present Conditions vs. Proposed Conditions Peak Runoff Rates						
Storm Frequency	Maximum Allowable Proposed Conditions Peak Runoff Rate (From Table 3.1) (cfs)	Proposed Conditions Peak Runoff Rate (cfs)				
2-Year Storm	2.55	1.82	ОК			
10-Year Storm	4.93	4.82	ОК			
25-Year Storm	7.16	6.63	ОК			
100-Year Storm	10.32	9.87	ОК			

Detailed computations are presented in Appendix C of this report.

5.4 Groundwater Mounding

A groundwater Mounding analysis was performed in accordance with Chapter 13 of the New Jersey Stormwater Best Management Practices Manual, to assess hydraulic impacts of infiltration on the groundwater table. Refer to the report entitled "Results of Subsurface Exploration, Permeability Testing & Geotechnical Assessment" dated April 26, 2023, prepared by French and Parrello Associates for documentation of the infiltration rate and depth of the seasonal high water table.

Summary of Groundw Paramet	Summary of Groundwater Mounding Parameters			
Seasonal High Water Table Elevation	96			
Bottom of Basin Elevation	102			
Design Recharge Rate	1.85			
Basin Recharge Area	1,777			
Volume Recharged	1,908			

 $\frac{\textit{Recharge Volume (CF)} * 12 \frac{\textit{in}}{\textit{ft}}}{\textit{Infiltration Area (SF)} * \textit{Infiltration Rate } \frac{\textit{in}}{\textit{hr}}}$

Summary of Groundwater Mounding Analysis			
Duration of Infiltration Period	6.96		
Groundwater Mounding Height	3.74		
Top of Mound Elevation	96+3.74 = 99.74 < 102		

Table 5.4

Refer to Appendix F for detailed Groundwater Mounding Calculations.

5.5 Soil Erosion and Sediment Control

Per the Standards for Soil Erosion and Sediment Control in New Jersey, the proposed conditions were analyzed for off-site stability. Proposed development routes the outflow to a new inlet structure next to an existing outlet structure with riprap. The overflow will flow through a new proposed scour hole around the inlet bubbler structure. The scour hole is sized conservatively, assuming that the inlet pipe into the structure is the diameter of the outlet pipe. The scour hole dimensions are 15 feet long, 12.5 feet wide, with a 15" depth.

6.0 CONCLUSION

The proposed development has been designed with a subsurface infiltration basin to comply with the Borough of Sayreville stormwater management requirements and the N.J.A.C. 7:8 - New Jersey Stormwater Management Rules.

Appendix A Supporting Documents

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 3/27/2023 Page 1 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
DouC	Downer-Urban land complex, 5 to 10 percent slopes	A	13.0	100.0%	
Totals for Area of Intere	st	13.0	100.0%		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified Tie-break Rule: Higher

Estimating Runoff and Peak Discharges

NEW JERSEY 24 HOUR RAINFALL FREQUENCY DATA

Rainfall amounts in Inches

County	1 year	2 year	5 year	10 year	25 year	50 year	100 year
Atlantic	2.72	3.31	4.30	5.16	6.46	7.61	8.90
Bergen	2.75	3.34	4.27	5.07	6.28	7.32	8.47
Burlington	2.77	3.36	4.34	5.18	6.45	7.56	8.81
Camden	2.73	3.31	4.25	5.06	6.28	7.34	8.52
Cape May	2.67	3.25	4.22	5.07	6.34	7.47	8.73
Cumberland	2.69	3.27	4.25	5.09	6.37	7.49	8.76
Essex	2.85	3.44	4.40	5.22	6.44	7.49	8.66
Gloucester	2.71	3.29	4.24	5.05	6.29	7.36	8.55
Hudson	2.73	3.31	4.23	5.02	6.19	7.20	8.31
Hunterdon	2.80	3.38	4.26	5.00	6.09	7.02	8.03
Mercer	2.74	3.31	4.23	5.01	6.19	7.20	8.33
Middlesex	2.76	3.35	4.30	5.12	6.36	7.43	8.63
Monmouth	2.79	3.38	4.38	5.23	6.53	7.66	8.94
Morris	2.94	3.54	4.47	5.24	6.37	7.32	8.35
Ocean	2.81	3.42	4.45	5.33	6.68	7.87	9.20
Passaic	2.87	3.47	4.42	5.23	6.43	7.47	8.62
Salem	2.69	3.26	4.20	5.00	6.22	7.28	8.45
Somerset	2.76	3.34	4.25	5.01	6.15	7.13	8.21
Sussex	2.68	3.22	4.02	4.70	5.72	6.60	7.58
Union	2.80	3.39	4.35	5.17	6.42	7.49	8.69
Warren	2.78	3.34	4.18	4.89	5.93	6.83	7.82

Notes: The average point rainfall amounts listed above were developed from data contained in NOAA Atlas 14 Volume 2.

Point rainfall estimates for specific locations may be obtained from the Precipitation Frequency Data Server located at <u>http://www.nws.noaa.gov/ohd/hdsc/</u>

For most hydrologic design procedures, the rainfall amounts listed above may be rounded to the nearest tenth of an inch.

PROJECT NAME:		Bulk Yard 3	5
CALCULATED BY:	KN	DATE:	4/7/2023
CHECKED BY:		DATE:	
REVISED BY:		DATE:	

TELEPHONE : (732) 312-9800 FAX : (732) 312-9801 1800 ROUTE 34, SUITE 101 WALL, NEW JERSEY 07719

Sheet: 1 of 2

TIME OF CONCENTRATION CALCULATOR

DRAINAGE AREA NAME: Approved Drainage Area 1 Impe DRAINAGE AREA NOTATION:

Sheet Flow:	Segment 1		
	Smooth surface (concrete,		
Surface Type:	asphalt, gravel, or bare soil)		
Slope of land surface, S:	0.034 ft/ft		
n-value (from Table 15-1):	0.011		
Limiting Length of flow, <i>I</i> :	100.0	ft	
2-year, 24 hours rainfall, P ₂ :	3.350	in	
Travel time, T _t :	1.0	minutes	

Shallow Concentrated Flow: Segment 2

Surface Type:	Pavement and small upland gullies	
Flow length, I:	400	ft
Slope of land surface, S:	0.032	ft/ft
n-value (from Table 15-3):	0.025	
Average velocity, V:	3.636	ft/s
Travel time, T _t :	1.8	minutes

calculations for sheet flow based upon Equation 15-8 from "Part 630 Hydrology, National Engineering Handbook: Chapter 15 - Time of Concentration" issued by the United States Department of Agriculture, Natural Resources Conservation Service.

$$T_{t} = \frac{0.007(n/)^{0.8}}{(P_{2})^{0.5} S^{0.4}} \quad (Eq \ 15-8)$$

$$T_t = \frac{l}{3,600V}$$
 (Eq 15-1)

Total Time of Concentration:	3 m	ninutes user input
------------------------------	-----	--------------------

PROJECT NAME:		Bulk Yard 3	5
CALCULATED BY:	KN	DATE:	4/7/2023
CHECKED BY:		DATE:	
REVISED BY:		DATE:	

TELEPHONE : (732) 312-9800 FAX : (732) 312-9801 1800 ROUTE 34, SUITE 101 WALL, NEW JERSEY 07719

Sheet: 1 of 2

TIME OF CONCENTRATION CALCULATOR

DRAINAGE AREA NAME: Approved Drainage Area 1 Pervi DRAINAGE AREA NOTATION:

Sheet Flow:	Segment 1	
Surface Type:	Grass: Short-grass prairie	
Slope of land surface, S:	0.032 ft/ft	
n-value (from Table 15-1):	0.15	
Limiting Length of flow, <i>I</i> :	100.0	ft
2-year, 24 hours rainfall, P ₂ :	3.350	in
Travel time, T _t :	7.9	minutes

Shallow Concentrated Flow: Segment 2

Surface Type:	Grassed waterways	
Flow length, l:	272	ft
Slope of land surface, S:	0.032	ft/ft
n-value (from Table 15-3):	0.05	
Average velocity, V:	2.886	ft/s
Travel time, T _t :	1.6	minutes

calculations for sheet flow based upon Equation 15-8 from "Part 630 Hydrology, National Engineering Handbook: Chapter 15 - Time of Concentration" issued by the United States Department of Agriculture, Natural Resources Conservation Service.

$$T_{t} = \frac{0.007(n/)^{0.8}}{(P_{2})^{0.5} S^{0.4}}$$
 (Eq 15-8)

$$T_t = \frac{l}{3,600V}$$
 (Eq 15-1)

Total Time of Concentration:	9 minutes	user input
------------------------------	-----------	------------

DRAINAGE AREA NOTATION:

PROJECT NAME:		Bulk Yard 3	5
CALCULATED BY:	KN	DATE:	4/7/2023
CHECKED BY:		DATE:	
REVISED BY:		DATE:	

TELEPHONE : (732) 312-9800 FAX : (732) 312-9801 1800 ROUTE 34, SUITE 101 WALL, NEW JERSEY 07719

Sheet: 1 of 2

TIME OF CONCENTRATION CALCULATOR

DRAINAGE AREA NAME: DA 1 TO BASIN PERVIOUS

Sheet Flow:	Segment 1		
Surface Type:	Grass: Short-grass prairie		
Slope of land surface, S:	0.130 ft/ft		
n-value (from Table 15-1):	0.15		
Limiting Length of flow, <i>I</i> :	23.0	ft	
2-year, 24 hours rainfall, P ₂ :	3.350	in	
Travel time, T _t :	1.4	minutes	

Sheet Flow:	Segment 2	
	Smooth surface (concrete,	
Surface Type:	asphalt, gravel, or bare	soil)
Slope of land surface, S:	0.033 ft/ft	
n-value (from Table 15-1):	0.011	
Limiting Length of flow, <i>I</i> :	100.0	ft
2-year, 24 hours rainfall, P ₂ :	3.350	in
Travel time, T _t :	1.0	minutes

calculations for sheet flow based upon Equation 15-8 from "Part 630 Hydrology, National Engineering Handbook: Chapter 15 - Time of Concentration" issued by the United States Department of Agriculture, Natural Resources Conservation Service.

$$T_{t} = \frac{0.007(n/)^{0.8}}{(P_{2})^{0.5} S^{0.4}}$$
 (Eq 15-8)

$$T_t = \frac{l}{3,600V}$$
 (Eq 15-1)

Total Time of Concentration:	2	minutes	user input
------------------------------	---	---------	------------

DRAINAGE AREA NOTATION:

PROJECT NAME:		Bulk Yard 3	5
CALCULATED BY:	KN	DATE:	4/7/2023
CHECKED BY:		DATE:	
REVISED BY:		DATE:	

TELEPHONE : (732) 312-9800 FAX : (732) 312-9801 1800 ROUTE 34, SUITE 101 WALL, NEW JERSEY 07719

Sheet: 1 of 2

TIME OF CONCENTRATION CALCULATOR

DRAINAGE AREA NAME: DA 1 TO BASIN BUILDING

Sheet Flow:	Segment 1		
	Smooth surface (concrete,		
Surface Type:	asphalt, gravel, or bare soil)		
Slope of land surface, S:	0.167 ft/ft		
n-value (from Table 15-1):	0.011		
Limiting Length of flow, <i>I</i> :	100.0	ft	
2-year, 24 hours rainfall, P ₂ :	3.350	in	
Travel time, T _t :	0.5	minutes	

calculations for sheet flow based upon Equation 15-8 from "Part 630 Hydrology, National Engineering Handbook: Chapter 15 - Time of Concentration" issued by the United States Department of Agriculture, Natural Resources Conservation Service.

$$T_{t} = \frac{0.007(n/)^{0.8}}{(P_{2})^{0.5} S^{0.4}}$$
 (Eq 15-8)

Open Channel Flow:

Hydraulic Length:	45	ft
Slope:	0.010	ft/ft
Manning's n:	0.012	
Flow Area:	0.128	ft ²
Wetted Perimeter:	0.91	ft
Velocity:	3.36	fps
Travel time, T _t :	0.2	minutes

DRAINAGE AREA NOTATION:

PROJECT NAME:		Bulk Yard 3	5
CALCULATED BY:	KN	DATE:	4/7/2023
CHECKED BY:		DATE:	
REVISED BY:		DATE:	

TELEPHONE : (732) 312-9800 FAX : (732) 312-9801 1800 ROUTE 34, SUITE 101 WALL, NEW JERSEY 07719

Sheet: 1 of 2

TIME OF CONCENTRATION CALCULATOR

DRAINAGE AREA NAME: DA 1 TO BASIN IMPERVIOUS

Sheet Flow:	Segment 1	
	Smooth surface (concrete,	
Surface Type:	asphalt, gravel, or bare soil)	
Slope of land surface, S:	0.015	ft/ft
n-value (from Table 15-1):	0.011	
Limiting Length of flow, <i>I</i> :	100.0	ft
2-year, 24 hours rainfall, P ₂ :	3.350	in
Travel time, T _t :	1.3	minutes

Shallow Concentrated Flow: Segment 2

Surface Type:	Pavement and small upland gullies	
Flow length, I:	70	ft
Slope of land surface, S:	0.0330	ft/ft
n-value (from Table 15-3):	0.025	
Average velocity, V:	3.693	ft/s
Travel time, T _t :	0.3	minutes

calculations for sheet flow based upon Equation 15-8 from "Part 630 Hydrology, National Engineering Handbook: Chapter 15 - Time of Concentration" issued by the United States Department of Agriculture, Natural Resources Conservation Service.

$$T_{t} = \frac{0.007(n/)^{0.8}}{(P_{2})^{0.5} S^{0.4}}$$
 (Eq 15-8)

Total Time of Concentration:	2	minutes	user input
------------------------------	---	---------	------------

PROJECT NAME:		Bulk Yard 3	5
CALCULATED BY:	KN	DATE:	4/7/2023
CHECKED BY:		DATE:	
REVISED BY:		DATE:	

TELEPHONE : (732) 312-9800 FAX : (732) 312-9801 1800 ROUTE 34, SUITE 101 WALL, NEW JERSEY 07719

Sheet: 1 of 2

TIME OF CONCENTRATION CALCULATOR

DRAINAGE AREA NAME: DA 1 BASIN BYPASS PERVIOUS DRAINAGE AREA NOTATION:

Sheet Flow:	Segment 1	
Surface Type:	Grass: Short-grass prairie	
Slope of land surface, S:	0.028	ft/ft
n-value (from Table 15-1):	0.15	
Limiting Length of flow, <i>I</i> :	100.0	ft
2-year, 24 hours rainfall, P ₂ :	3.350	in
Travel time, T _t :	8.4	minutes

Shallow Concentrated Flow: Segment 2

Surface Type:	Grassed waterways	
Flow length, l:	300	ft
Slope of land surface, S:	0.028	ft/ft
n-value (from Table 15-3):	0.05	
Average velocity, V:	2.700	ft/s
Travel time, T _t :	1.9	minutes

calculations for sheet flow based upon Equation 15-8 from "Part 630 Hydrology, National Engineering Handbook: Chapter 15 - Time of Concentration" issued by the United States Department of Agriculture, Natural Resources Conservation Service.

$$T_{t} = \frac{0.007(nl)^{0.8}}{(P_{2})^{0.5} S^{0.4}} \quad (Eq \ 15-8)$$

$$T_t = \frac{l}{3,600V}$$
 (Eq 15-1)

PROJECT NAME:		Bulk Yard 3	5
CALCULATED BY:	KN	DATE:	4/7/2023
CHECKED BY:		DATE:	
REVISED BY:		DATE:	

TELEPHONE : (732) 312-9800 FAX : (732) 312-9801 1800 ROUTE 34, SUITE 101 WALL, NEW JERSEY 07719

Sheet: 1 of 2

TIME OF CONCENTRATION CALCULATOR

DRAINAGE AREA NAME: DA 1 TO BASIN BYPASS IMPERVI DRAINAGE AREA NOTATION:

Sheet Flow:	Segment 1		
	Smooth surface (concrete,		
Surface Type:	asphalt, gravel, or bare soil)		
Slope of land surface, S:	0.027 ft/ft		
n-value (from Table 15-1):	0.011		
Limiting Length of flow, <i>I</i> :	100.0 ft		
2-year, 24 hours rainfall, P ₂ :	3.350	in	
Travel time, T _t :	1.0	minutes	

Shallow Concentrated Flow: Segment 2

Surface Type:	Pavement and small upland gullies		
Flow length, I:	302	ft	
Slope of land surface, S:	0.027	ft/ft	
n-value (from Table 15-3):	0.025		
Average velocity, V:	3.340	ft/s	
Travel time, T _t :	1.5	minutes	

calculations for sheet flow based upon Equation 15-8 from "Part 630 Hydrology, National Engineering Handbook: Chapter 15 - Time of Concentration" issued by the United States Department of Agriculture, Natural Resources Conservation Service.

$$T_{t} = \frac{0.007(n/)^{0.8}}{(P_{2})^{0.5} S^{0.4}}$$
 (Eq 15-8)

Total Time of Concentration:	3	minutes	user input
------------------------------	---	---------	------------

Project SummaryTitleBulk Yard 35EngineerKiera NissenCompanyFrench and
Parrello AssociatesDate4/5/2023

Notes

APPROVED CONDITIONS CALCULATIONS

InfiltrationBasin.ppc 5/15/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 1 of 23

Table of Contents

	Master Network Summary	2
da approved perv		
	Unit Hydrograph Summary, 2 years (Pre-Development 2 year)	3
	Unit Hydrograph Summary, 10 years (Pre-Development 10 year)	5
	Unit Hydrograph Summary, 25 years (Pre-Development 25 year)	7
	Unit Hydrograph Summary, 100 years (Pre-Development 100 year)	9
DA1-approved imp		
	Unit Hydrograph Summary, 2 years (Pre-Development 2 year)	11
	Unit Hydrograph Summary, 10 years (Pre-Development 10 year)	13
	Unit Hydrograph Summary, 25 years (Pre-Development 25 year)	15
	Unit Hydrograph Summary, 100 years (Pre-Development 100 year)	17
0-1		
	Addition Summary, 2 years (Pre-Development 2 year)	19
	Addition Summary, 10 years (Pre-Development 10 year)	20
	Addition Summary, 25 years (Pre-Development 25 year)	21
	Addition Summary, 100 years (Pre-Development 100 year)	22

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft³/s)
DA1-approved imp	Pre-Development 2 year	2	6,842.000	726.000	2.09
DA1-approved imp	Pre-Development 10 year	10	10,719.000	726.000	3.22
DA1-approved imp	Pre-Development 25 year	25	13,438.000	726.000	4.00
DA1-approved imp	Pre-Development 100 year	100	18,417.000	726.000	5.44
da approved perv	Pre-Development 2 year	2	3,226.000	729.000	0.78
da approved perv	Pre-Development 10 year	10	8,386.000	729.000	2.35
da approved perv	Pre-Development 25 vear	25	12,704.000	729.000	3.64
da approved perv	Pre-Development 100 year	100	21,503.000	729.000	6.21

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft ³ /s)
0-1	Pre-Development 2 year	2	10,068.000	726.000	2.70
0-1	Pre-Development 10 year	10	19,105.000	726.000	5.22
0-1	Pre-Development 25 year	25	26,142.000	726.000	7.16
0-1	Pre-Development 100 year	100	39,920.000	727.000	10.98

Subsection: Unit Hydrograph Summary Label: da approved perv Scenario: Pre-Development 2 year

Return Event: 2 years Storm Event: NOAA-D (3.35 in)

Storm Event	NOAA-D (3.35 in)
Return Event	2 years
Duration	1,440.000 min
Depth	, 3.35 in
Time of Concentration	0.000
(Composite)	9.000 min
Area (User Defined)	59,399.000 ft ²
Computational Time Increment	1.200 min
Time to Peak (Computed)	729.600 min
Flow (Peak, Computed)	0.78 ft³/s
Output Increment	1.002 min
Time to Flow (Peak	720,000
Interpolated Output)	729.000 min
Flow (Peak Interpolated Output)	0.78 ft³/s
Drainage Area	
SCS CN (Composite)	64.531
Area (User Defined)	59,399.000 ft ²
Maximum Retention (Pervious)	5.50 in
Maximum Retention	1 10 in
(Pervious, 20 percent)	1.10 m
Cumulative Runoff Depth (Pervious)	0.65 in
Runoff Volume (Pervious)	3,236.742 ft ³
Hydrograph Volume (Area L	inder Hydrograph curve)
Volume	3,226.000 ft ³
CCC Unit Hydrograph Darar	motoro
	neters
Time of Concentration (Composite)	9.000 min
Computational Time Increment	1.200 min
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	10.30 ft ³ /s

InfiltrationBasin.ppc 5/15/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 3 of 23

Subsection: Unit Hydrograph Summary Label: da approved perv Scenario: Pre-Development 2 year

Return Event: 2 years Storm Event: NOAA-D (3.35 in)

. ,	
SCS Unit Hydrograph Parameters	
Unit peak time, Tp	6.000 min
Unit receding limb, Tr	24.000 min
Total unit time, Tb	30.000 min

InfiltrationBasin.ppc 5/15/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 4 of 23

Subsection: Unit Hydrograph Summary Label: da approved perv Scenario: Pre-Development 10 year

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

Storm Event	NOAA-D (5.12 in)
Return Event	10 years
Duration	1,440.000 min
Depth	5.12 in
Time of Concentration	0.000 min
(Composite)	9.000 min
Area (User Defined)	59,399.000 ft ²
Computational Time Increment	1.200 min
Time to Peak (Computed)	728.400 min
Flow (Peak, Computed)	2.36 ft ³ /s
Output Increment	1.002 min
Time to Flow (Peak	720.000 min
Interpolated Output)	729.000 min
Flow (Peak Interpolated Output)	2.35 ft ³ /s
Drainage Area	
SCS CN (Composite)	64.531
Area (User Defined)	59,399.000 ft ²
Maximum Retention (Pervious)	5.50 in
Maximum Retention	1 10 in
(Pervious, 20 percent)	1.10 11
Cumulative Runoff Depth (Pervious)	1.70 in
Runoff Volume (Pervious)	8,408.236 ft ³
Hydrograph Volume (Area u	nder Hydrograph curve)
Volume	8,386.000 ft ³
SCS Unit Hydrograph Paran	neters
Time of Concentration (Composite)	9.000 min
Computational Time Increment	1.200 min
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Recedina/Risina. Tr/Tn	1.670
Unit peak, ap	10.30 ft ³ /s
one poor ap	10.00 10 / 5

InfiltrationBasin.ppc 5/15/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 5 of 23

Subsection: Unit Hydrograph Summary Label: da approved perv Scenario: Pre-Development 10 year

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

SCS Unit Hydrograph Parameters		
Unit peak time, Tp	6.000 min	
Unit receding limb, Tr	24.000 min	
Total unit time, Tb	30.000 min	

InfiltrationBasin.ppc 5/15/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 6 of 23

Subsection: Unit Hydrograph Summary Label: da approved perv Scenario: Pre-Development 25 year

Return Event: 25 years Storm Event: NOAA-D (6.36 in)

Storm Event	NOAA-D (6.36 in)
Return Event	25 years
Duration	1,440.000 min
Depth	6.36 in
Time of Concentration	9 000 min
(Composite)	5.000 mm
Area (User Defined)	59,399.000 ft ²
Computational Time Increment	1.200 min
Time to Peak (Computed)	728.400 min
Flow (Peak, Computed)	3.66 ft ³ /s
Output Increment	1.002 min
Time to Flow (Peak Interpolated Output)	729.000 min
Flow (Peak Interpolated Output)	3.64 ft ³ /s
Drainage Area	
SCS CN (Composite)	64.531
Area (User Defined)	59,399.000 ft ²
Maximum Retention (Pervious)	5.50 in
Maximum Retention	1.10 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	2.57 in
Runoff Volume (Pervious)	12,734.921 ft ³
Hydrograph Volume (Area u	nder Hydrograph curve)
Volume	12,704.000 ft ³
SCS Unit Hydrograph Paran	neters
Time of Concentration (Composite)	9.000 min
Computational Time Increment	1.200 min
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	10.30 ft ³ /s

InfiltrationBasin.ppc 5/15/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 7 of 23

Subsection: Unit Hydrograph Summary Label: da approved perv Scenario: Pre-Development 25 year

Return Event: 25 years Storm Event: NOAA-D (6.36 in)

SCS Unit Hydrograph Parameters		
Unit peak time, Tp	6.000 min	
Unit receding limb, Tr	24.000 min	
Total unit time, Tb	30.000 min	

InfiltrationBasin.ppc 5/15/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 8 of 23 Subsection: Unit Hydrograph Summary Label: da approved perv Scenario: Pre-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

······			
Storm Event	NOAA-D (8.63 in)		
Return Event	100 years		
Duration	1,440.000 min		
Depth	8.63 in		
Time of Concentration	0.000 min		
(Composite)	9.000 11111		
Area (User Defined)	59,399.000 ft ²		
Computational Time Increment	1.200 min		
Time to Peak (Computed)	728.400 min		
Flow (Peak, Computed)	6.27 ft³/s		
Output Increment	1.002 min		
Time to Flow (Peak	720,000 min		
Interpolated Output)	729.000 11111		
Flow (Peak Interpolated Output)	6.21 ft ³ /s		
Drainage Area			
SCS CN (Composite)	64.531		
Area (User Defined)	59,399.000 ft ²		
Maximum Retention (Pervious)	5.50 in		
Maximum Retention	1 10 in		
(Pervious, 20 percent)	1.10 m		
Cumulative Runoff			
Cumulative Runoff Depth (Pervious)	4.35 in		
Runoff Volume (Pervious)	21,548.921 ft ³		
nyurograph volume (Area u	nuel Hydrograph curve)		
Volume	21,503.000 ft ³		
SCS Unit Hydrograph Parameters			
Time of Concentration (Composite)	9.000 min		
Computational Time Increment	1.200 min		
Unit Hydrograph Shape Factor	483.432		
K Factor	0.749		
Receding/Rising, Tr/Tp	1.670		
Unit peak, qp	10.30 ft ³ /s		

InfiltrationBasin.ppc 5/15/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 9 of 23 Subsection: Unit Hydrograph Summary Label: da approved perv Scenario: Pre-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

SCS Unit Hydrograph Parameters		
Unit peak time, Tp	6.000 min	
Unit receding limb, Tr	24.000 min	
Total unit time, Tb	30.000 min	

InfiltrationBasin.ppc 5/15/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 10 of 23

Subsection: Unit Hydrograph Summary Label: DA1-approved imp Scenario: Pre-Development 2 year

Return Event: 2 years Storm Event: NOAA-D (3.35 in)

Storm Event	NOAA-D (3.35 in)	
Return Event	2 years	
Duration	1,440.000 min	
Depth	3.35 in	
Time of Concentration	3 000 min	
(Composite)	5.000 mm	
Area (User Defined)	26,354.000 ft ²	
Computational Time Increment	0.400 min	
Time to Peak (Computed)	726.000 min	
Flow (Peak, Computed)	2.09 ft ³ /s	
Output Increment	1.002 min	
Time to Flow (Peak Interpolated Output)	726.000 min	
Flow (Peak Interpolated Output)	2.09 ft ³ /s	
Drainage Area		
SCS CN (Composite)	98.000	
Area (User Defined)	26,354.000 ft ²	
Maximum Retention (Pervious)	0.20 in	
Maximum Retention	0.04 in	
(Pervious, 20 percent)		
Cumulative Runoff		
Cumulative Runoff Depth	3.12 in	
Runoff Volume (Pervious)	6,845.354 ft³	
· · · · · · · · · · · · · · · · · · ·		
Hydrograph Volume (Area u	nder Hydrograph curve)	
Volume	6,842.000 ft ³	
SCS Unit Hydrograph Parameters		
Time of Concentration		
(Composite)	3.000 min	
Computational Time Increment	0.400 min	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	13.71 ft³/s	

InfiltrationBasin.ppc 5/15/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 11 of 23

Subsection: Unit Hydrograph Summary Label: DA1-approved imp Scenario: Pre-Development 2 year Return Event: 2 years Storm Event: NOAA-D (3.35 in)

SCS Unit Hydrograph Parameters		
Unit peak time, Tp	2.000 min	
Unit receding limb, Tr	8.000 min	
Total unit time, Tb	10.000 min	

InfiltrationBasin.ppc 5/15/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 12 of 23
Subsection: Unit Hydrograph Summary Label: DA1-approved imp Scenario: Pre-Development 10 year

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

Storm Event	NOAA-D (5.12 in)
Return Event	10 years
Duration	1,440.000 min
Depth	5.12 in
Time of Concentration	2 000 min
(Composite)	5.000 11111
Area (User Defined)	26,354.000 ft ²
Computational Time Increment	0.400 min
Time to Peak (Computed)	726.000 min
Flow (Peak, Computed)	3.22 ft ³ /s
Output Increment	1.002 min
Time to Flow (Peak Interpolated Output)	726.000 min
Flow (Peak Interpolated Output)	3.22 ft³/s
Drainago Aroa	
SCS CN (Composite)	98.000
Area (User Defined)	26,354.000 ft ²
Maximum Retention (Pervious)	0.20 in
Maximum Retention	0.04 in
(Pervious, 20 percent)	
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	4.88 in
Runoff Volume (Pervious)	10,723.848 ft ³
Hydrograph Volume (Area u	inder Hydrograph curve)
Volume	10.719.000 ft ³
	•
SCS Unit Hydrograph Parar	neters
Time of Concentration (Composite)	3.000 min
Computational Time Increment	0.400 min
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, gp	13.71 ft ³ /s
· · · ··	,-

InfiltrationBasin.ppc 5/15/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 13 of 23

Subsection: Unit Hydrograph Summary Label: DA1-approved imp Scenario: Pre-Development 10 year

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	2.000 min
Unit receding limb, Tr	8.000 min
Total unit time, Tb	10.000 min

InfiltrationBasin.ppc 5/15/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 14 of 23

Subsection: Unit Hydrograph Summary Label: DA1-approved imp Scenario: Pre-Development 25 year

Return Event: 25 years Storm Event: NOAA-D (6.36 in)

Storm Event	NOAA-D (6.36 in)
Return Event	25 years
Duration	1,440.000 min
Depth	6.36 in
Time of Concentration	3.000 min
(Composite)	
Area (User Defined)	26,354.000 ft ²
Increment	0.400 min
Time to Peak (Computed)	726.000 min
Flow (Peak, Computed)	4.00 ft ³ /s
Output Increment	1.002 min
Time to Flow (Peak	726.000 min
Interpolated Output)	
Output)	4.00 ft ³ /s
Drainage Area	
SCS CN (Composite)	98.000
Area (User Defined)	26,354.000 ft ²
Maximum Retention	0.20 in
(Pervious)	
(Pervious, 20 percent)	0.04 in
Cumulative Runoff	
Cumulative Runoff Depth	6.12 in
(Pervious) Bunoff Volumo (Bonvious)	12 442 905 0 3
Runon volume (Pervious)	13,443.805 IL ³
Hydrograph Volume (Area	under Hydrograph curve)
Volume	13,438.000 ft ³
SCS Unit Hydrograph Para	meters
Time of Concentration (Composite)	3.000 min
Computational Time Increment	0.400 min
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	13.71 ft³/s

InfiltrationBasin.ppc 5/15/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 15 of 23

Subsection: Unit Hydrograph Summary Label: DA1-approved imp Scenario: Pre-Development 25 year

Return Event: 25 years Storm Event: NOAA-D (6.36 in)

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	2.000 min
Unit receding limb, Tr	8.000 min
Total unit time, Tb	10.000 min

InfiltrationBasin.ppc 5/15/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 16 of 23 Subsection: Unit Hydrograph Summary Label: DA1-approved imp Scenario: Pre-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Storm Event	NOAA-D (8.63 in)
Return Event	100 years
Duration	1,440.000 min
Depth	8.63 in
Time of Concentration	3 000 min
(Composite)	5.000 mm
Area (User Defined)	26,354.000 ft ²
Computational Time Increment	0.400 min
Time to Peak (Computed)	726.000 min
Flow (Peak, Computed)	5.44 ft ³ /s
Output Increment	1.002 min
Time to Flow (Peak	726 000 min
Interpolated Output)	720.000 mm
Flow (Peak Interpolated Output)	5.44 ft ³ /s
Drainage Area	
SCS CN (Composite)	98.000
Area (User Defined)	26,354.000 ft ²
Maximum Retention (Pervious)	0.20 in
Maximum Retention	0.04 in
(Pervious, 20 percent)	
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	8.39 in
Runoff Volume (Pervious)	18,425.483 ft ³
Hydrograph Volume (Area u	inder Hydrograph curve)
Volume	18,417.000 ft ³
SCS Unit Hydrograph Parar	neters
Time of Concentration (Composite)	3.000 min
Computational Time Increment	0.400 min
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	13.71 ft³/s

InfiltrationBasin.ppc 5/15/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 17 of 23 Subsection: Unit Hydrograph Summary Label: DA1-approved imp Scenario: Pre-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	2.000 min
Unit receding limb, Tr	8.000 min
Total unit time, Tb	10.000 min

InfiltrationBasin.ppc 5/15/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 18 of 23

Return Event: 2 years Storm Event: NOAA-D (3.35 in)

Scenario: Pre-Development 2 year

Summary for Hydrograph Addition at 'O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	da approved perv
<catchment node="" outflow="" to=""></catchment>	DA1-approved imp

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	da approved perv	3,225.864	729.000	0.78
Flow (From)	DA1-approved imp	6,842.150	726.000	2.09
Flow (In)	0-1	10,068.014	726.000	2.70

InfiltrationBasin.ppc 5/15/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 19 of 23

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

Scenario: Pre-Development 10 year

Summary for Hydrograph Addition at 'O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	da approved perv
<catchment node="" outflow="" to=""></catchment>	DA1-approved imp

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	da approved perv	8,385.944	729.000	2.35
Flow (From)	DA1-approved imp	10,718.940	726.000	3.22
Flow (In)	0-1	19,104.884	726.000	5.22

InfiltrationBasin.ppc 5/15/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 20 of 23

Return Event: 25 years Storm Event: NOAA-D (6.36 in)

Scenario: Pre-Development 25 year

Summary for Hydrograph Addition at 'O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	da approved perv
<catchment node="" outflow="" to=""></catchment>	DA1-approved imp

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	da approved perv	12,704.233	729.000	3.64
Flow (From)	DA1-approved imp	13,437.704	726.000	4.00
Flow (In)	0-1	26,141.937	726.000	7.16

InfiltrationBasin.ppc 5/15/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 21 of 23

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Scenario: Pre-Development 100 year

Summary for Hydrograph Addition at 'O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	da approved perv
<catchment node="" outflow="" to=""></catchment>	DA1-approved imp

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	da approved perv	21,502.628	729.000	6.21
Flow (From)	DA1-approved imp	18,417.202	726.000	5.44
Flow (In)	0-1	39,919.830	727.000	10.98

InfiltrationBasin.ppc 5/15/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 22 of 23

Index

d

da approved perv (Unit Hydrograph Summary, 10 years (Pre-Development 10 year))...5, 6

da approved perv (Unit Hydrograph Summary, 100 years (Pre-Development 100 year))...9, 10

da approved perv (Unit Hydrograph Summary, 2 years (Pre-Development 2 year))...3, 4

da approved perv (Unit Hydrograph Summary, 25 years (Pre-Development 25 year))...7, 8

D

DA1-approved imp (Unit Hydrograph Summary, 10 years (Pre-Development 10 year))...13, 14 DA1-approved imp (Unit Hydrograph Summary, 100 years (Pre-Development 100 year))...17, 18 DA1-approved imp (Unit Hydrograph Summary, 2 years (Pre-Development 2 year))...11, 12 DA1-approved imp (Unit Hydrograph Summary, 25 years (Pre-Development 25 year))...15, 16

М

Master Network Summary...2

0

O-1 (Addition Summary, 10 years (Pre-Development 10 year))...20

O-1 (Addition Summary, 100 years (Pre-Development 100 year))...22

O-1 (Addition Summary, 2 years (Pre-Development 2 year))...19

O-1 (Addition Summary, 25 years (Pre-Development 25 year))...21

InfiltrationBasin.ppc 5/15/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 23 of 23

Appendix C Proposed Conditions Calculations

Project Summary		
Title	Bulk Yard 35	
Engineer	Kiera Nissen	
Company	French and Parrello Associates	
Date	12/20/2023	
Notes	Proposed Calculations	

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 1 of 80

Table of Contents

	Master Network Summary	2
basin bypass impervious		
	Unit Hydrograph Summary, 2 years (Post-Development 2 year)	4
	Unit Hydrograph Summary, 10 years (Post-Development 10 year)	6
	Unit Hydrograph Summary, 25 years (Post-Development 25 year)	8
	Unit Hydrograph Summary, 100 years (Post-Development 100 year)	10
Building		
	Unit Hydrograph Summary, 2 years (Post-Development 2 year)	12
	Unit Hydrograph Summary, 10 years (Post-Development 10 year)	14
	Unit Hydrograph Summary, 25 years (Post-Development 25 year)	16
	Unit Hydrograph Summary, 100 years (Post-Development 100 year)	18
da 1 basin bypass pervious		
	Unit Hydrograph Summary, 2 years (Post-Development 2 year)	20
	Unit Hydrograph Summary, 10 years (Post-Development 10 year)	22
	Unit Hydrograph Summary, 25 years (Post-Development 25 year)	24
	Unit Hydrograph Summary, 100 years (Post-Development 100 year)	26
To Pavement-imp		
	Unit Hydrograph Summary, 2 years (Post-Development 2 year)	28
	Unit Hydrograph Summary, 10 years (Post-Development 10 year)	30
	Unit Hydrograph Summary, 25 years (Post-Development 25 year)	32
	Unit Hydrograph Summary, 100 years (Post-Development 100 year)	34
To pavement-pervious		
	Unit Hydrograph Summary, 2 years (Post-Development 2 year)	36
	Unit Hydrograph Summary, 10 years (Post-Development 10 year)	38
	Unit Hydrograph Summary, 25 years (Post-Development 25 year)	40
	Unit Hydrograph Summary, 100 years (Post-Development 100 year)	42
0-1		
	Addition Summary, 2 years (Post-Development 2 year)	44
	Addition Summary, 10 years (Post-Development 10 year)	45
	Addition Summary, 25 years (Post-Development 25 year)	46
	Addition Summary, 100 years (Post-Development 100 year)	47

Table of Contents

Composite Outlet Structure - 1		
	Outlet Input Data, 100 years (Post-Development 100 year)	48
	Individual Outlet Curves, 100 years (Post-Development 100 year)	50
	Composite Rating Curve, 100 years (Post-Development 100 year)	63
Infiltration Basin (IN)		
	Level Pool Pond Routing Summary, 2 years (Post-Development 2 year)	66
	Level Pool Pond Routing Summary, 10 years (Post- Development 10 year)	67
	Level Pool Pond Routing Summary, 25 years (Post- Development 25 year)	68
	Level Pool Pond Routing Summary, 100 years (Post- Development 100 year)	69
Infiltration Basin (OUT)		
	Pond Routed Hydrograph (total out), 2 years (Post- Development 2 year)	70
	Pond Routed Hydrograph (total out), 10 years (Post- Development 10 year)	72
	Pond Routed Hydrograph (total out), 25 years (Post- Development 25 year)	74
	Pond Routed Hydrograph (total out), 100 years (Post- Development 100 year)	76

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft³/s)
To Pavement-imp	Post-Development 2 vear	2	5,864.000	726.000	1.80
To Pavement-imp	Post-Development 10 year	10	9,187.000	725.000	2.77
To Pavement-imp	Post-Development 25 year	25	11,517.000	725.000	3.45
To Pavement-imp	Post-Development 100 year	100	15,785.000	725.000	4.69
To pavement-pervious	Post-Development 2 year	2	581.000	726.000	0.21
To pavement-pervious	Post-Development 10 year	10	1,390.000	726.000	0.52
To pavement-pervious	Post-Development 25 year	25	2,045.000	726.000	0.76
To pavement-pervious	Post-Development 100 year	100	3,353.000	726.000	1.22
da 1 basin bypass pervious	Post-Development 2 vear	2	4,710.000	729.000	1.27
da 1 basin bypass	Post-Development 10	10	9,990.000	729.000	2.77
da 1 basin bypass	Post-Development 25	25	14,066.000	729.000	3.89
da 1 basin bypass pervious	Post-Development	100	21,956.000	729.000	6.01
Building	Post-Development 2 year	2	1,313.000	726.000	0.41
Building	Post-Development 10 year	10	2,057.000	726.000	0.62
Building	Post-Development 25 year	25	2,579.000	726.000	0.77
Building	Post-Development 100 year	100	3,534.000	726.000	1.05
basin bypass impervious	Post-Development 2 year	2	2,197.000	726.000	0.67
basin bypass impervious	Post-Development 10 vear	10	3,443.000	726.000	1.03
basin bypass impervious	Post-Development 25	25	4,316.000	726.000	1.29
basin bypass impervious	Post-Development 100 year	100	5,915.000	726.000	1.75

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft³/s)	
0-1	Post-Development 2 year	2	8,112.000	727.000	1.82	
InfiltrationBasin.ppc 12/20/2023	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666				PondPack CONNECT [10.02 Page	Edition 2.00.01] 2 of 80

Subsection: Master Network Summary

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft ³)	Time to Peak (min)	Peak Flow (ft³/s)
0-1	Post-Development 10 year	10	17,871.000	727.000	4.82
O-1	Post-Development 25 year	25	25,405.000	727.000	6.63
0-1	Post-Development 100 year	100	40,157.000	727.000	9.87

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft ³)	Time to Peak (min)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ft³)
Infiltration Basin (IN)	Post- Development 2 year	2	7,759.000	726.000	2.42	(N/A)	(N/A)
Infiltration Basin (OUT)	Post- Development 2 year	2	1,205.000	751.000	0.25	104.21	2,628.000
Infiltration Basin (IN)	Post- Development 10 vear	10	12,634.000	726.000	3.91	(N/A)	(N/A)
Infiltration Basin (OUT)	Post- Development 10 year	10	4,438.000	730.000	1.35	105.01	3,729.000
Infiltration Basin (IN)	Post- Development 25 year	25	16,141.000	726.000	4.98	(N/A)	(N/A)
Infiltration Basin (OUT)	Post- Development 25 year	25	7,024.000	729.000	1.86	105.72	4,635.000
Infiltration Basin (IN)	Post- Development 100 vear	100	22,673.000	726.000	6.96	(N/A)	(N/A)
Infiltration Basin (OUT)	Post- Development 100 year	100	12,286.000	729.000	2.70	107.36	6,106.000

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 3 of 80 Subsection: Unit Hydrograph Summary Label: basin bypass impervious Scenario: Post-Development 2 year Return Event: 2 years Storm Event: NOAA-D (3.35 in)

Storm Event	NOAA-D (3.35 in)
Return Event	2 years
Duration	1,500.000 min
Depth	3.35 in
Time of Concentration	3 000 min
(Composite)	
Area (User Defined)	8,460.000 ft ²
Computational Time Increment	0.400 min
Time to Peak (Computed)	726.000 min
Flow (Peak, Computed)	0.67 ft ³ /s
Output Increment	1.002 min
Time to Flow (Peak Interpolated Output)	726.000 min
Flow (Peak Interpolated Output)	0.67 ft³/s
Drainaga Araa	
SCS CN (Composite)	98.000
Area (User Defined)	8,460.000 ft ²
Maximum Retention (Pervious)	0.20 in
Maximum Retention	0.04 in
(Pervious, 20 percent)	
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	3.12 in
Runoff Volume (Pervious)	2,197.454 ft ³
Hydrograph Volume (Area I	inder Hydrograph curve)
volume	2,197.000 π3
SCS Unit Hydrograph Parar	neters
Time of Concentration (Composite)	3.000 min
Computational Time Increment	0.400 min
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising. Tr/Tp	1.670
Unit peak, ap	4.40 ft ³ /s
- F / - 11,	

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 4 of 80 Subsection: Unit Hydrograph Summary Label: basin bypass impervious Scenario: Post-Development 2 year Return Event: 2 years Storm Event: NOAA-D (3.35 in)

SCS Unit Hydrograph Parameters	3
Unit peak time, Tp	2.000 min
Unit receding limb, Tr	8.000 min
Total unit time, Tb	10.000 min

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 5 of 80 Subsection: Unit Hydrograph Summary Label: basin bypass impervious Scenario: Post-Development 10 year Return Event: 10 years Storm Event: NOAA-D (5.12 in)

Storm Event	NOAA-D (5.12 in)
Return Event	10 years
Duration	1,500.000 min
Depth	5.12 in
Time of Concentration	3.000 min
(Composite)	0.400.000 83
Area (User Defined)	8,460.000 ft ²
Increment	0.400 min
Time to Peak (Computed)	726.000 min
Flow (Peak, Computed)	1.03 ft ³ /s
Output Increment	1.002 min
Time to Flow (Peak Interpolated Output)	726.000 min
Flow (Peak Interpolated Output)	1.03 ft³/s
Drainago Aroa	
SCS CN (Composite)	98.000
Area (User Defined)	8,460.000 ft ²
Maximum Retention (Pervious)	0.20 in
Maximum Retention	0.04 in
(Pervious, 20 percent)	
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	4.88 in
Runoff Volume (Pervious)	3,442.504 ft ³
Hydrograph Volume (Area u	Inder Hydrograph curve)
Volume	3 443 000 ft3
	3, 13.000 10
SCS Unit Hydrograph Parar	neters
Time of Concentration (Composite)	3.000 min
Computational Time	0.400 min
Unit Hydrograph Shape Eactor	483.432
K Factor	0 749
Receding/Rising Tr/Tn	1 670
Unit peak, op	4 40 ft ³ /s
or hours dh	1101075

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 6 of 80 Subsection: Unit Hydrograph Summary Label: basin bypass impervious Scenario: Post-Development 10 year

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

· ·	
SCS Unit Hydrograph Parameters	
Unit peak time, Tp	2.000 min
Unit receding limb, Tr	8.000 min
Total unit time, Tb	10.000 min

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 7 of 80 Subsection: Unit Hydrograph Summary Label: basin bypass impervious Scenario: Post-Development 25 year Return Event: 25 years Storm Event: NOAA-D (6.36 in)

Storm Event	NOAA-D (6.36 in)
Return Event	25 years
Duration	1,500.000 min
Depth	6.36 in
Time of Concentration	2 000 min
(Composite)	5.000 11111
Area (User Defined)	8,460.000 ft ²
Computational Time Increment	0.400 min
Time to Peak (Computed)	726.000 min
Flow (Peak, Computed)	1.29 ft ³ /s
Output Increment	1.002 min
Time to Flow (Peak Interpolated Output)	726.000 min
Flow (Peak Interpolated Output)	1.29 ft³/s
Ducing up Anno	
Drainage Area	
SCS CN (Composite)	98.000
Area (User Defined)	8,460.000 ft ²
Maximum Retention (Pervious)	0.20 in
Maximum Retention (Pervious, 20 percent)	0.04 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	6.12 in
Runoff Volume (Pervious)	4,315.648 ft ³
Hydrograph Volume (Area u	inder Hydrograph curve)
Volume	4,316.000 ft ³
SCS Unit Hydrograph Parar	neters
Time of Concentration	
(Composite)	3.000 min
Computational Time Increment	0.400 min
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	4.40 ft ³ /s

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 8 of 80 Subsection: Unit Hydrograph Summary Label: basin bypass impervious Scenario: Post-Development 25 year Return Event: 25 years Storm Event: NOAA-D (6.36 in)

· ·	
SCS Unit Hydrograph Parameters	
Unit peak time, Tp	2.000 min
Unit receding limb, Tr	8.000 min
Total unit time, Tb	10.000 min

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 9 of 80 Subsection: Unit Hydrograph Summary Label: basin bypass impervious Scenario: Post-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Storm Event	NOAA-D (8.63 in)	
Return Event	100 years	
Duration	1,500.000 min	
Depth	8.63 in	
Time of Concentration	3 000 min	
(Composite)	5.000 mm	
Area (User Defined)	8,460.000 ft ²	
Computational Time Increment	0.400 min	
Time to Peak (Computed)	726.000 min	
Flow (Peak, Computed)	1.75 ft ³ /s	
Output Increment	1.002 min	
Time to Flow (Peak	726.000 min	
Flow (Peak Interpolated Output)	1.75 ft³/s	
Drainage Area		
SCS CN (Composite)	98.000	
Area (User Defined)	8,460.000 ft ²	
Maximum Retention (Pervious)	0.20 in	
Maximum Retention	0.04 in	
(Pervious, 20 percent)		
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	8.39 in	
Runoff Volume (Pervious)	5,914.836 ft ³	
Hydrograph Volume (Area under Hydrograph curve)		
Volume	5,915.000 ft ³	
SCS Unit Hydrograph Parag	neters	
Time of Concentration (Composite)	3.000 min	
Computational Time Increment	0.400 min	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	4.40 ft ³ /s	

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 10 of 80 Subsection: Unit Hydrograph Summary Label: basin bypass impervious Scenario: Post-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

· ·	
SCS Unit Hydrograph Parameters	
Unit peak time, Tp	2.000 min
Unit receding limb, Tr	8.000 min
Total unit time, Tb	10.000 min

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 11 of 80 Subsection: Unit Hydrograph Summary Label: Building Scenario: Post-Development 2 year

Return Event: 2 years Storm Event: NOAA-D (3.35 in)

······		
Storm Event	NOAA-D (3.35 in)	
Return Event	2 years	
Duration	1,500.000 min	
Depth	3.35 in	
Time of Concentration	1 000 min	
(Composite)	1.000 min	
Area (User Defined)	5,055.120 ft ²	
Computational Time Increment	0.133 min	
Time to Peak (Computed)	726.000 min	
Flow (Peak, Computed)	0.41 ft³/s	
Output Increment	1.002 min	
Time to Flow (Peak	726.000	
Interpolated Output)	726.000 min	
Flow (Peak Interpolated Output)	0.41 ft³/s	
Drainage Area		
SCS CN (Composite)	98.000	
Area (User Defined)	5,055.120 ft ²	
Maximum Retention (Pervious)	0.20 in	
Maximum Retention	0.04	
(Pervious, 20 percent)	0.04 In	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	3.12 in	
Runoff Volume (Pervious)	1,313.047 ft ³	
Hydrograph Volume (Area under Hydrograph curve)		
Volume	1,313.000 ft ³	
SCS Unit Hydrograph Parameters		
Time of Concentration		
(Composite)	1.000 min	
Computational Time Increment	0.133 min	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising Tr/Tn	1,670	
	=	
Unit neak, an	7.89 ft³/s	

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 12 of 80 Subsection: Unit Hydrograph Summary Label: Building Scenario: Post-Development 2 year

Return Event: 2 years Storm Event: NOAA-D (3.35 in)

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	0.667 min
Unit receding limb, Tr	2.667 min
Total unit time, Tb	3.333 min

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 13 of 80 Subsection: Unit Hydrograph Summary Label: Building Scenario: Post-Development 10 year

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

······		
Storm Event	NOAA-D (5.12 in)	
Return Event	10 years	
Duration	1,500.000 min	
Depth	5.12 in	
Time of Concentration	1 000 min	
(Composite)	1.000 mm	
Area (User Defined)	5,055.120 ft ²	
Computational Time Increment	0.133 min	
Time to Peak (Computed)	726.000 min	
Flow (Peak, Computed)	0.62 ft ³ /s	
Output Increment	1.002 min	
Time to Flow (Peak Interpolated Output)	726.000 min	
Flow (Peak Interpolated Output)	0.62 ft³/s	
Drainage Area		
SCS CN (Composite)	98.000	
Area (User Defined)	5,055.120 ft ²	
Maximum Retention (Pervious)	0.20 in	
Maximum Retention (Pervious, 20 percent)	0.04 in	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	4.88 in	
Runoff Volume (Pervious)	2,057.005 ft ³	
Hydrograph Volume (Area u	nder Hydrograph curve)	
Volume	2,057.000 ft ³	
SCS Unit Hydrograph Parameters		
Time of Concentration (Composite)	1.000 min	
Computational Time Increment	0.133 min	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, gp	7.89 ft ³ /s	
. ,	,-	

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 14 of 80 Subsection: Unit Hydrograph Summary Label: Building Scenario: Post-Development 10 year

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	0.667 min
Unit receding limb, Tr	2.667 min
Total unit time, Tb	3.333 min

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 15 of 80 Subsection: Unit Hydrograph Summary Label: Building Scenario: Post-Development 25 year

Return Event: 25 years Storm Event: NOAA-D (6.36 in)

Storm Event	NOAA-D (6.36 in)	
Return Event	25 years	
Duration	1,500.000 min	
Depth	6.36 in	
Time of Concentration	1 000 min	
(Composite)	1.000 min	
Area (User Defined)	5,055.120 ft ²	
Computational Time Increment	0.133 min	
Time to Peak (Computed)	726.000 min	
Flow (Peak, Computed)	0.77 ft³/s	
Output Increment	1.002 min	
Time to Flow (Peak	726 000 min	
Interpolated Output)	726.000 min	
Flow (Peak Interpolated Output)	0.77 ft ³ /s	
Drainage Area		
SCS CN (Composite)	98.000	
Area (User Defined)	5,055.120 ft ²	
Maximum Retention (Pervious)	0.20 in	
Maximum Retention	0.04 in	
(Pervious, 20 percent)	0.01 11	
Our off		
Cumulative Runoff Depth (Pervious)	6.12 in	
Runoff Volume (Pervious)	2,578.737 ft ³	
Hydrograph Volume (Area u	inder Hydrograph curve)	
Volume	2,579.000 ft ³	
SCS Unit Hydrograph Parameters		
Time of Concentration (Composite)	1.000 min	
Computational Time Increment	0.133 min	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising Tr/Tn	1,670	
Unit neak, an	7 89 ft ³ /s	
onic peaky qp	7.05 10 / 5	

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 16 of 80 Subsection: Unit Hydrograph Summary Label: Building Scenario: Post-Development 25 year

Return Event: 25 years Storm Event: NOAA-D (6.36 in)

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	0.667 min
Unit receding limb, Tr	2.667 min
Total unit time, Tb	3.333 min

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 17 of 80 Subsection: Unit Hydrograph Summary Label: Building Scenario: Post-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Storm Event	NOAA-D (8.63 in)	
Return Event	100 years	
Duration	1,500.000 min	
Depth	8.63 in	
Time of Concentration	1 000 min	
(Composite)	1.000 mm	
Area (User Defined)	5,055.120 ft ²	
Computational Time Increment	0.133 min	
Time to Peak (Computed)	726.000 min	
Flow (Peak, Computed)	1.05 ft³/s	
Output Increment	1.002 min	
Time to Flow (Peak Interpolated Output)	726.000 min	
Flow (Peak Interpolated Output)	1.05 ft ³ /s	
Drainago Aroa		
SCS CN (Composite)	98.000	
Area (User Defined)	5,055.120 ft²	
Maximum Retention (Pervious)	0.20 in	
Maximum Retention	0.04 in	
(Pervious, 20 percent)		
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	8.39 in	
Runoff Volume (Pervious)	3,534.303 ft ³	
Hydrograph Volume (Area u	inder Hydrograph curve)	
Volume	3,534.000 ft ³	
SCS Unit Hydrograph Parameters		
Time of Concentration (Composite)	1.000 min	
Computational Time Increment	0.133 min	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising. Tr/Tp	1.670	
Unit neak, an	7 89 ft ³ /s	
Still board db	/105/10/75	

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 18 of 80 Subsection: Unit Hydrograph Summary Label: Building Scenario: Post-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

SCS Unit Hydrograph Parameters		
Unit peak time, Tp	0.667 min	
Unit receding limb, Tr	2.667 min	
Total unit time, Tb	3.333 min	

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 19 of 80

Subsection: Unit Hydrograph Summary Label: da 1 basin bypass pervious Scenario: Post-Development 2 year

Return Event: 2 years Storm Event: NOAA-D (3.35 in)

Storm Event	NOAA-D (3.35 in)	
Return Event	2 years	
Duration	1,500.000 min	
Depth	3.35 in	
Time of Concentration	10.000 min	
(Composite)	46 716 000 62	
Area (User Defined)	46,/16.000 ft²	
Increment	1.333 min	
Time to Peak (Computed)	729.333 min	
Flow (Peak, Computed)	1.28 ft ³ /s	
Output Increment	1.002 min	
Time to Flow (Peak Interpolated Output)	729.000 min	
Flow (Peak Interpolated Output)	1.27 ft³/s	
Drainaga Araa		
SCS CN (Composite)	75.219	
Area (User Defined)	46,/16.000 ft ²	
Maximum Retention (Pervious)	3.29 in	
Maximum Retention	0.66 in	
(Pervious, 20 percent)		
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	1.21 in	
Runoff Volume (Pervious)	4,710.112 ft ³	
Hydrograph Volume (Area	under Hydrograph curve)	
Volume	4,710.000 ft ³	
SCS Unit Hydrograph Parameters		
Time of Concentration	10.000 min	
Computational Time	1.333 min	
Unit Hydrograph Shape	483.432	
Factor	0	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	7.29 ft³/s	

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 20 of 80

Subsection: Unit Hydrograph Summary Label: da 1 basin bypass pervious Scenario: Post-Development 2 year Return Event: 2 years Storm Event: NOAA-D (3.35 in)

SCS Unit Hydrograph Parameters		
Unit peak time, Tp	6.667 min	
Unit receding limb, Tr	26.667 min	
Total unit time, Tb	33.333 min	

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 21 of 80

Subsection: Unit Hydrograph Summary Label: da 1 basin bypass pervious Scenario: Post-Development 10 year

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

Storm Event	NOAA-D (5.12 in)
Return Event	10 years
Duration	1,500.000 min
Depth	5.12 in
Time of Concentration	10.000 min
(Composite)	46 716 000 0 3
Area (User Defined)	46,716.000 M²
Increment	1.333 min
Time to Peak (Computed)	729.333 min
Flow (Peak, Computed)	2.78 ft ³ /s
Output Increment	1.002 min
Time to Flow (Peak	729 000 min
Interpolated Output)	725.000 mm
Flow (Peak Interpolated	2.77 ft ³ /s
Drainage Area	
SCS CN (Composite)	75.219
Area (User Defined)	46,716.000 ft ²
Maximum Retention	3 29 in
(Pervious)	5.25 11
Maximum Retention	0.66 in
Cumulative Runoff	
Cumulative Runoff Depth	2 57 in
(Pervious)	2.57 11
Runoff Volume (Pervious)	9,989.636 ft ³
Hydrograph Volume (Area u	under Hydrograph curve)
Volume	9 990 000 ft3
Volume	5,550.000 10
SCS Unit Hydrograph Para	meters
Time of Concentration (Composite)	10.000 min
Computational Time Increment	1.333 min
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	7.29 ft ³ /s

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 22 of 80
Subsection: Unit Hydrograph Summary Label: da 1 basin bypass pervious Scenario: Post-Development 10 year Return Event: 10 years Storm Event: NOAA-D (5.12 in)

SCS Unit Hydrograph Parameters	3
Unit peak time, Tp	6.667 min
Unit receding limb, Tr	26.667 min
Total unit time, Tb	33.333 min

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 23 of 80

Subsection: Unit Hydrograph Summary Label: da 1 basin bypass pervious Scenario: Post-Development 25 year

Return Event: 25 years Storm Event: NOAA-D (6.36 in)

Storm Event	NOAA-D (6.36 in)
Return Event	25 years
Duration	1,500.000 min
Depth	6.36 in
Time of Concentration	10.000 min
(Composite)	
Area (User Defined)	46,716.000 ft ²
Computational Time Increment	1.333 min
Time to Peak (Computed)	729.333 min
Flow (Peak, Computed)	3.91 ft ³ /s
Output Increment	1.002 min
Time to Flow (Peak Interpolated Output)	729.000 min
Flow (Peak Interpolated Output)	3.89 ft³/s
Drainage Area	
SCS (N (Composite)	75 219
Area (User Defined)	46 716 000 ft ²
Maximum Retention	10,7 10.000 10
(Pervious)	3.29 in
Maximum Retention	0.66 in
(Pervious, 20 percent)	0.00 11
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	3.61 in
Runoff Volume (Pervious)	14,065.940 ft ³
Hydrograph Volume (Area u	nder Hydrograph curve)
Volume	14,066.000 ft ³
SCS Unit Hydrograph Parar	neters
Time of Concentration (Composite)	10.000 min
Computational Time Increment	1.333 min
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising. Tr/Tp	1.670
Unit peak, ap	7.29 ft ³ /s

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 24 of 80

Subsection: Unit Hydrograph Summary Label: da 1 basin bypass pervious Scenario: Post-Development 25 year Return Event: 25 years Storm Event: NOAA-D (6.36 in)

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	6.667 min
Unit receding limb, Tr	26.667 min
Total unit time, Tb	33.333 min

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 25 of 80

Subsection: Unit Hydrograph Summary Label: da 1 basin bypass pervious Scenario: Post-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Storm Event	NOAA-D (8.63 in)
Return Event	100 years
Duration	1,500.000 min
Depth	, 8.63 in
Time of Concentration	
(Composite)	10.000 min
Area (User Defined)	46,716.000 ft ²
Computational Time Increment	1.333 min
Time to Peak (Computed)	729.333 min
Flow (Peak, Computed)	6.03 ft³/s
Output Increment	1.002 min
Time to Flow (Peak	720,000 min
Interpolated Output)	729.000 min
Flow (Peak Interpolated Output)	6.01 ft ³ /s
Drainage Area	
SCS CN (Composite)	75.219
Area (User Defined)	46,716.000 ft ²
Maximum Retention	3.29 in
(Pervious)	
(Pervious, 20 percent)	0.66 in
Cumulative Runoff	
Cumulative Runoff Depth	5 64 in
(Pervious)	5.61 11
Runoff Volume (Pervious)	21,956.569 ft ³
Hydrograph Volume (Area	under Hydrograph curve)
Volume	21,956.000 ft ³
SCS Unit Hydrograph Para	meters
Time of Concentration	
(Composite)	10.000 min
Computational Time	1 222
Increment	1.333 min
Unit Hydrograph Shape	483.432
Factor	
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	7.29 ft ³ /s

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 26 of 80

Subsection: Unit Hydrograph Summary Label: da 1 basin bypass pervious Scenario: Post-Development 100 year Return Event: 100 years Storm Event: NOAA-D (8.63 in)

SCS Unit Hydrograph Parameter	S
Unit peak time, Tp	6.667 min
Unit receding limb, Tr	26.667 min
Total unit time, Tb	33.333 min

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 27 of 80

Subsection: Unit Hydrograph Summary Label: To Pavement-imp Scenario: Post-Development 2 year

Return Event: 2 years Storm Event: NOAA-D (3.35 in)

Storm Event	NOAA-D (3.35 in)	
Return Event	2 years	
Duration	1,500.000 min	
Depth	3.35 in	
Time of Concentration	2 000 min	
(Composite)	2.000 mm	
Area (User Defined)	22,578.000 ft ²	
Computational Time Increment	0.267 min	
Time to Peak (Computed)	725.867 min	
Flow (Peak, Computed)	1.81 ft ³ /s	
Output Increment	1.002 min	
Time to Flow (Peak	726 000 min	
Interpolated Output)	720.000 mm	
Flow (Peak Interpolated	1.80 ft ³ /s	
Drainage Area		
SCS CN (Composite)	98.000	
Area (User Defined)	22,578,000 ft ²	
Maximum Retention		
(Pervious)	0.20 in	
Maximum Retention	0.04 in	
(Pervious, 20 percent)	0.01 m	
Cumulative Runoff Depth	3.12 in	
(Let vious) Runoff Volume (Pervious)	5 864 551 ft ³	
	5,001.55110	
Hydrograph Volume (Area under Hydrograph curve)		
Volume	5,864.000 ft ³	
SCS Unit Hydrograph Paran	neters	
Time of Concentration (Composite)	2.000 min	
Computational Time Increment	0.267 min	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising. Tr/Tp	1.670	
Unit peak, gp	17.62 ft ³ /s	

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 28 of 80

Subsection: Unit Hydrograph Summary Label: To Pavement-imp Scenario: Post-Development 2 year Return Event: 2 years Storm Event: NOAA-D (3.35 in)

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	1.333 min
Unit receding limb, Tr	5.333 min
Total unit time, Tb	6.667 min

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 29 of 80 Subsection: Unit Hydrograph Summary Label: To Pavement-imp Scenario: Post-Development 10 year

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

Storm Event	NOAA-D (5.12 in)	
Return Event	10 years	
Duration	1,500.000 min	
Depth	5.12 in	
Time of Concentration	2 000 min	
(Composite)	2.000 min	
Area (User Defined)	22,578.000 ft ²	
Computational Time Increment	0.267 min	
Time to Peak (Computed)	725.867 min	
Flow (Peak, Computed)	2.78 ft ³ /s	
Output Increment	1.002 min	
Time to Flow (Peak	705 000	
Interpolated Output)	725.000 min	
Flow (Peak Interpolated Output)	2.77 ft ³ /s	
Drainage Area		
SCS CN (Composite)	98.000	
Area (User Defined)	22,578.000 ft ²	
Maximum Retention (Pervious)	0.20 in	
Maximum Retention	0.04 in	
(Pervious, 20 percent)	0.04 11	
Cumulative Runoff Depth (Pervious)	4.88 in	
Runoff Volume (Pervious)	9,187.336 ft ³	
nydrograph volume (Area u	nuel Hydrograph curve)	
Volume	9,187.000 ft ³	
SCS Unit Hydrograph Parameters		
Time of Concentration (Composite)	2.000 min	
Computational Time Increment	0.267 min	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Recedina/Risina, Tr/Tp	1.670	
Unit peak, op	17.62 ft ³ /s	
	2,102 10,10	

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 30 of 80 Subsection: Unit Hydrograph Summary Label: To Pavement-imp Scenario: Post-Development 10 year

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

. ,	
SCS Unit Hydrograph Parameters	
Unit peak time, Tp	1.333 min
Unit receding limb, Tr	5.333 min
Total unit time, Tb	6.667 min

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 31 of 80

Subsection: Unit Hydrograph Summary Label: To Pavement-imp Scenario: Post-Development 25 year

Return Event: 25 years Storm Event: NOAA-D (6.36 in)

Storm Event	NOAA-D (6.36 in)
Return Event	25 years
Duration	1,500.000 min
Depth	6.36 in
Time of Concentration	2 000 min
(Composite)	2.000 mm
Area (User Defined)	22,578.000 ft ²
Computational Time Increment	0.267 min
Time to Peak (Computed)	725.867 min
Flow (Peak, Computed)	3.46 ft ³ /s
Output Increment	1.002 min
Time to Flow (Peak	725 000 min
Interpolated Output)	725.000 mm
Flow (Peak Interpolated Output)	3.45 ft ³ /s
Drainage Area	
SCS CN (Composite)	98.000
Area (User Defined)	22,578.000 ft ²
Maximum Retention (Pervious)	0.20 in
Maximum Retention	0.04 in
(Pervious, 20 percent)	0.01 m
Cumulative Dunoff	
Cumulative Runoff Depth (Pervious)	6.12 in
Runoff Volume (Pervious)	11,517.576 ft ³
Hydrograph Volume (Area u	nder Hydrograph curve)
Volume	11,517.000 ft ³
SCS Unit Hydrograph Paran	neters
Time of Concentration	
(Composite)	2.000 min
Computational Time	0.267 min
Increment	0.207 [[]][]
Unit Hydrograph Shape	483.432
rdClOr K Easter	0 740
	0.749
Recealing/Rising, Tr/Tp	1.6/0
Unit peak, qp	17.62 ft³/s

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 32 of 80

Subsection: Unit Hydrograph Summary Label: To Pavement-imp Scenario: Post-Development 25 year

Return Event: 25 years Storm Event: NOAA-D (6.36 in)

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	1.333 min
Unit receding limb, Tr	5.333 min
Total unit time, Tb	6.667 min

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 33 of 80

Subsection: Unit Hydrograph Summary Label: To Pavement-imp Scenario: Post-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Storm Event	NOAA-D (8.63 in)	
Return Event	100 years	
Duration	1,500.000 min	
Depth	8.63 in	
Time of Concentration	2 000 min	
(Composite)	2.000 11111	
Area (User Defined)	22,578.000 ft ²	
Computational Time Increment	0.267 min	
Time to Peak (Computed)	725.867 min	
Flow (Peak, Computed)	4.70 ft ³ /s	
Output Increment	1.002 min	
Time to Flow (Peak Interpolated Output)	725.000 min	
Flow (Peak Interpolated Output)	4.69 ft³/s	
Drainaga Araa		
Drainage Area		
SCS CN (Composite)	98.000	
Area (User Defined)	22,578.000 ft ²	
Maximum Retention (Pervious)	0.20 in	
Maximum Retention	0.04 in	
(Pervious, 20 percent)		
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	8.39 in	
Runoff Volume (Pervious)	15,785.481 ft ³	
Hydrograph Volume (Area under Hydrograph curve)		
Volume	15,785.000 ft ³	
SCS Unit Hydrograph Parar	neters	
Time of Concentration (Composite)	2.000 min	
Computational Time	0.267 min	
Unit Hydrograph Shape Eactor	483.432	
K Factor	0 749	
Receding/Rising Tr/Tn	1 670	
Linit neak on	17 62 ft3/c	
onic peak, qp	17.02 11-75	

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 34 of 80

Subsection: Unit Hydrograph Summary Label: To Pavement-imp Scenario: Post-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	1.333 min
Unit receding limb, Tr	5.333 min
Total unit time, Tb	6.667 min

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 35 of 80

Subsection: Unit Hydrograph Summary Label: To pavement-pervious Scenario: Post-Development 2 year

Return Event: 2 years Storm Event: NOAA-D (3.35 in)

Storm Event	NOAA-D (3.35 in)		
Return Event	2 years		
Duration	1,500.000 min		
Depth	3.35 in		
Time of Concentration	2 000 min		
(Composite)	2.000 mm		
Area (User Defined)	8,352.000 ft ²		
Computational Time Increment	0.267 min		
Time to Peak (Computed)	726.133 min		
Flow (Peak, Computed)	0.21 ft ³ /s		
Output Increment	1.002 min		
Time to Flow (Peak	726 000 min		
Interpolated Output)	720.000 mm		
Flow (Peak Interpolated Output)	0.21 ft³/s		
Drainage Area			
SCS CN (Composite)	68.402		
Area (User Defined)	8,352.000 ft ²		
Maximum Retention	4 62 in		
(Pervious)	7.02 11		
Maximum Retention	0.92 in		
(Pervious, 20 percent)			
Cumulative Runoff			
Cumulative Runoff Depth (Pervious)	0.84 in		
Runoff Volume (Pervious)	581.462 ft ³		
Hydrograph Volume (Area under Hydrograph curve)			
Volume	581.000 ft ³		
SCS Unit Hydrograph Parameters			
Time of Concentration			
(Composite)	2.000 min		
Computational Time Increment	0.267 min		
Unit Hydrograph Shape Factor	483.432		
K Factor	0.749		
Receding/Rising Tr/Tn	1,670		
Unit neak on	6 52 ft ³ /s		
Sinc peak, qp	0.52 1075		

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 36 of 80

Subsection: Unit Hydrograph Summary Label: To pavement-pervious Scenario: Post-Development 2 year Return Event: 2 years Storm Event: NOAA-D (3.35 in)

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	1.333 min
Unit receding limb, Tr	5.333 min
Total unit time, Tb	6.667 min

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 37 of 80

Subsection: Unit Hydrograph Summary Label: To pavement-pervious Scenario: Post-Development 10 year

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

Storm Event	NOAA-D (5.12 in)	
Return Event	10 years	
Duration	1,500.000 min	
Depth	5.12 in	
Time of Concentration	2 000 min	
(Composite)	2.000 11111	
Area (User Defined)	8,352.000 ft ²	
Computational Time Increment	0.267 min	
Time to Peak (Computed)	726.133 min	
Flow (Peak, Computed)	0.52 ft ³ /s	
Output Increment	1.002 min	
Time to Flow (Peak Interpolated Output)	726.000 min	
Flow (Peak Interpolated Output)	0.52 ft³/s	
Droinago Aroo		
Drainage Area		
SCS CN (Composite)	68.402	
Area (User Defined)	8,352.000 ft ²	
Maximum Retention (Pervious)	4.62 in	
Maximum Retention	0.92 in	
(Pervious, 20 percent)		
Cumulative Runoff		
Cumulative Runoff Depth	2.00 in	
Runoff Volume (Pervious)	1.390.137 ft ³	
	,	
Hydrograph Volume (Area u	nder Hydrograph curve)	
Volume	1,390.000 ft ³	
SCS Unit Hydrograph Parameters		
Time of Concentration		
(Composite)	2.000 min	
Computational Time Increment	0.267 min	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Risina, Tr/Tp	1.670	
Unit peak, qp	6.52 ft ³ /s	
	, -	

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 38 of 80

Subsection: Unit Hydrograph Summary Label: To pavement-pervious Scenario: Post-Development 10 year

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	1.333 min
Unit receding limb, Tr	5.333 min
Total unit time, Tb	6.667 min

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 39 of 80

Subsection: Unit Hydrograph Summary Label: To pavement-pervious Scenario: Post-Development 25 year

Return Event: 25 years Storm Event: NOAA-D (6.36 in)

Storm Event	NOAA-D (6.36 in)		
Return Event	25 years		
Duration	1,500.000 min		
Depth	6.36 in		
Time of Concentration	2 000 min		
(Composite)	2.000 mm		
Area (User Defined)	8,352.000 ft ²		
Computational Time Increment	0.267 min		
Time to Peak (Computed)	726.133 min		
Flow (Peak, Computed)	0.76 ft ³ /s		
Output Increment	1.002 min		
Time to Flow (Peak Interpolated Output)	726.000 min		
Flow (Peak Interpolated Output)	0.76 ft³/s		
Drainage Area			
SCS (N (Composito)	69.402		
Area (User Defined)	08.402 9.252.000 ft 2		
Area (User Defined)	0,352.000 IL ²		
(Pervious)	4.62 in		
Maximum Retention	0.02 in		
(Pervious, 20 percent)	0.52 11		
Cumulative Runoff Depth (Pervious)	2.94 in		
Runoff Volume (Pervious)	2,045.423 ft ³		
Hydrograph Volume (Area under Hydrograph curve)			
Volume	2,045.000 ft ³		
SCS Unit Hydrograph Paran	neters		
Time of Concentration (Composite)	2.000 min		
Computational Time Increment	0.267 min		
Unit Hydrograph Shape Factor	483.432		
K Factor	0.749		
Receding/Rising, Tr/Tp	1.670		
Unit peak, qp	6.52 ft ³ /s		

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 40 of 80

Subsection: Unit Hydrograph Summary Label: To pavement-pervious Scenario: Post-Development 25 year

Return Event: 25 years Storm Event: NOAA-D (6.36 in)

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	1.333 min
Unit receding limb, Tr	5.333 min
Total unit time, Tb	6.667 min

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 41 of 80 Subsection: Unit Hydrograph Summary Label: To pavement-pervious Scenario: Post-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Storm Event	NOAA-D (8.63 in)
Return Event	100 years
Duration	1,500.000 min
Depth	8.63 in
Time of Concentration	2 000 min
(Composite)	2.000 min
Area (User Defined)	8,352.000 ft ²
Computational Time Increment	0.267 min
Time to Peak (Computed)	725.867 min
Flow (Peak, Computed)	1.22 ft³/s
Output Increment	1.002 min
Time to Flow (Peak	726 000
Interpolated Output)	726.000 min
Flow (Peak Interpolated Output)	1.22 ft³/s
Drainage Area	
SCS CN (Composite)	68.402
Area (User Defined)	8,352.000 ft ²
Maximum Retention (Pervious)	4.62 in
Maximum Retention	0.92 in
(Pervious, 20 percent)	0.52 11
Cumulative Runoff Depth (Pervious)	4.82 in
Runoff Volume (Pervious)	3,353.326 ft ³
Hudrogroph Values (Are-	nder Widrogroph aus (a)
nydrograph volume (Area u	nuer Hydrograph curve)
Volume	3,353.000 ft ³
SCS Unit Hydrograph Paran	neters
Time of Concentration (Composite)	2.000 min
Computational Time Increment	0.267 min
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising Tr/Tn	1 670
Linit neak on	6 57 ft3/c
onic peak, qp	0.52 11-75

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 42 of 80

Subsection: Unit Hydrograph Summary Label: To pavement-pervious Scenario: Post-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	1.333 min
Unit receding limb, Tr	5.333 min
Total unit time, Tb	6.667 min

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 43 of 80

Subsection: Addition Summary Label: 0-1 Scenario: Post-Development 2 year

Return Event: 2 years Storm Event: NOAA-D (3.35 in)

Summary for Hydrograph Addition at 'O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	basin bypass impervious
Outlet-1	Infiltration Basin
<catchment node="" outflow="" to=""></catchment>	da 1 basin bypass pervious

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	basin bypass impervious	2,197.453	726.000	0.67
Flow (From)	Outlet-1	1,204.692	751.000	0.25
Flow (From)	da 1 basin bypass pervious	4,710.081	729.000	1.27
Flow (In)	0-1	8,112.226	727.000	1.82

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 44 of 80

Subsection: Addition Summary Label: 0-1 Scenario: Post-Development 10 year

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

Summary for Hydrograph Addition at 'O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	basin bypass impervious
Outlet-1	Infiltration Basin
<catchment node="" outflow="" to=""></catchment>	da 1 basin bypass pervious

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	basin bypass impervious	3,442.502	726.000	1.03
Flow (From)	Outlet-1	4,438.478	730.000	1.35
Flow (From)	da 1 basin bypass pervious	9,989.561	729.000	2.77
Flow (In)	0-1	17,870.541	727.000	4.82

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 45 of 80

Subsection: Addition Summary Label: 0-1

Return Event: 25 years Storm Event: NOAA-D (6.36 in)

Scenario: Post-Development 25 year

Summary for Hydrograph Addition at 'O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	basin bypass impervious
Outlet-1	Infiltration Basin
<catchment node="" outflow="" to=""></catchment>	da 1 basin bypass pervious

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	basin bypass impervious	4,315.645	726.000	1.29
Flow (From)	Outlet-1	7,023.716	729.000	1.86
Flow (From)	da 1 basin bypass pervious	14,065.839	729.000	3.89
Flow (In)	0-1	25,405.200	727.000	6.63

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 46 of 80

Subsection: Addition Summary Label: 0-1

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Scenario: Post-Development 100 year

Summary for Hydrograph Addition at 'O-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	basin bypass impervious
Outlet-1	Infiltration Basin
<catchment node="" outflow="" to=""></catchment>	da 1 basin bypass pervious

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	basin bypass impervious	5,914.832	726.000	1.75
Flow (From)	Outlet-1	12,286.066	729.000	2.70
Flow (From)	da 1 basin bypass pervious	21,956.410	729.000	6.01
Flow (In)	0-1	40,157.309	727.000	9.87

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 47 of 80

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 year Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Requested Pond Water Surface Elevations			
Minimum (Headwater) 102.00 ft			
Increment (Headwater)	0.10 ft		
Maximum (Headwater)	107.60 ft		

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Circular	Orifice - 1	Forward	TW	103.70	107.60
Orifice-Circular	Orifice - 2	Forward	TW	104.00	107.60
Rectangular Weir	Weir - 1	Forward	TW	107.45	107.60
Tailwater Settings	Tailwater			(N/A)	(N/A)

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 48 of 80

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	103.70 ft
Orifice Diameter	3.0 in
Orifice Coefficient	0.600
Structure ID: Weir - 1 Structure Type: Rectangular We	ir
Number of Openings	1
Elevation	107.45 ft
Weir Length	3.00 ft
Weir Coefficient	3.30 (ft^0.5)/s
Structure ID: Orifice - 2 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	104.00 ft
Orifice Diameter	7.0 in
Orifice Coefficient	0.600
Structure ID: TW Structure Type: TW Setup, DS C	hannel
Tailwater Type	Free Outfall
Convergence Tolerances	
Maximum Iterations	30
Tailwater Tolerance (Minimum)	0.01 ft
Tailwater Tolerance (Maximum)	0.50 ft
Headwater Tolerance (Minimum)	0.01 ft
Headwater Tolerance (Maximum)	0.50 ft
Flow Tolerance (Minimum)	0.001 ft ³ /s
Flow Tolerance (Maximum)	10.000 ft ³ /s

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 49 of 80

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface	Flow	Tailwater Elevation	Convergence Error
Elevation	(ft³/s)	(ft)	(ft)
(ft)			
102.00	0.00	(N/A)	0.00
102.10	0.00	(N/A)	0.00
102.20	0.00	(N/A)	0.00
102.30	0.00	(N/A)	0.00
102.40	0.00	(N/A)	0.00
102.50	0.00	(N/A)	0.00
102.60	0.00	(N/A)	0.00
102.70	0.00	(N/A)	0.00
102.80	0.00	(N/A)	0.00
102.90	0.00	(N/A)	0.00
103.00	0.00	(N/A)	0.00
103.10	0.00	(N/A)	0.00
103.20	0.00	(N/A)	0.00
103.30	0.00	(N/A)	0.00
103.40	0.00	(N/A)	0.00
103.50	0.00	(N/A)	0.00
103.60	0.00	(N/A)	0.00
103.70	0.00	(N/A)	0.00
103.80	0.02	(N/A)	0.00
103.90	0.06	(N/A)	0.00
104.00	0.10	(N/A)	0.00
104.10	0.12	(N/A)	0.00
104.20	0.14	(N/A)	0.00
104.30	0.16	(N/A)	0.00
104.40	0.18	(N/A)	0.00
104.50	0.19	(N/A)	0.00
104.60	0.21	(N/A)	0.00
104.70	0.22	(N/A)	0.00
104.80	0.23	(N/A)	0.00
104.90	0.24	(N/A)	0.00
105.00	0.26	(N/A)	0.00
105.10	0.27	(N/A)	0.00
105.20	0.28	(N/A)	0.00
105.30	0.29	(N/A)	0.00
105.40	0.30	(N/A)	0.00
105.50	0.31	(N/A)	0.00
105.60	0.31	(N/A)	0.00
105.70	0.32	(N/A)	0.00

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 50 of 80

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
105.80	0.33	(N/A)	0.00
105.90	0.34	(N/A)	0.00
106.00	0.35	(N/A)	0.00
106.10	0.36	(N/A)	0.00
106.20	0.36	(N/A)	0.00
106.30	0.37	(N/A)	0.00
106.40	0.38	(N/A)	0.00
106.50	0.39	(N/A)	0.00
106.60	0.39	(N/A)	0.00
106.70	0.40	(N/A)	0.00
106.80	0.41	(N/A)	0.00
106.90	0.41	(N/A)	0.00
107.00	0.42	(N/A)	0.00
107.10	0.43	(N/A)	0.00
107.20	0.43	(N/A)	0.00
107.30	0.44	(N/A)	0.00
107.40	0.45	(N/A)	0.00
107.45	0.45	(N/A)	0.00
107.50	0.45	(N/A)	0.00
107.60	0.46	(N/A)	0.00

Computation Messages HW & TW below invert HW & TW below invert

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 51 of 80

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Computation Messages Upstream HW & DNstream TW < Inv.El CRIT.DEPTH CONTROL Vh= .026ft Dcr= .074ft CRIT.DEPTH Hev= .00ft CRIT.DEPTH CONTROL Vh= .059ft Dcr= .141ft CRIT.DEPTH Hev= .00ft H =.18 H =.28 H =.38 H =.48 H =.58 H =.68 H =.78 H =.88 H =.98 H =1.08 H =1.18 H =1.28 H =1.38 H =1.48 H = 1.58H =1.68 H =1.78 H =1.88 H =1.98 H =2.08 H =2.18 H =2.28 H =2.38 H =2.48 H =2.58 H =2.68 H =2.78 H =2.88 H =2.98 H =3.08 H =3.18 H =3.28 H =3.38

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Return Event: 100 years Storm Event: NOAA-D (8.63 in)

PondPack CONNECT Edition

[10.02.00.01]

Page 52 of 80

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Computation Messages H =3.48 H =3.58 H =3.63 H =3.68 H =3.78 Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 53 of 80

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Weir - 1 (Rectangular Weir)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface	Flow	Tailwater Elevation	Convergence Error
Elevation	(ft³/s)	(ft)	(ft)
(ft)			
102.00	0.00	(N/A)	0.00
102.10	0.00	(N/A)	0.00
102.20	0.00	(N/A)	0.00
102.30	0.00	(N/A)	0.00
102.40	0.00	(N/A)	0.00
102.50	0.00	(N/A)	0.00
102.60	0.00	(N/A)	0.00
102.70	0.00	(N/A)	0.00
102.80	0.00	(N/A)	0.00
102.90	0.00	(N/A)	0.00
103.00	0.00	(N/A)	0.00
103.10	0.00	(N/A)	0.00
103.20	0.00	(N/A)	0.00
103.30	0.00	(N/A)	0.00
103.40	0.00	(N/A)	0.00
103.50	0.00	(N/A)	0.00
103.60	0.00	(N/A)	0.00
103.70	0.00	(N/A)	0.00
103.80	0.00	(N/A)	0.00
103.90	0.00	(N/A)	0.00
104.00	0.00	(N/A)	0.00
104.10	0.00	(N/A)	0.00
104.20	0.00	(N/A)	0.00
104.30	0.00	(N/A)	0.00
104.40	0.00	(N/A)	0.00
104.50	0.00	(N/A)	0.00
104.60	0.00	(N/A)	0.00
104.70	0.00	(N/A)	0.00
104.80	0.00	(N/A)	0.00
104.90	0.00	(N/A)	0.00
105.00	0.00	(N/A)	0.00
105.10	0.00	(N/A)	0.00
105.20	0.00	(N/A)	0.00
105.30	0.00	(N/A)	0.00
105.40	0.00	(N/A)	0.00
105.50	0.00	(N/A)	0.00
105.60	0.00	(N/A)	0.00
105.70	0.00	(N/A)	0.00

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 54 of 80

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Weir - 1 (Rectangular Weir)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
105.80	0.00	(N/A)	0.00
105.90	0.00	(N/A)	0.00
106.00	0.00	(N/A)	0.00
106.10	0.00	(N/A)	0.00
106.20	0.00	(N/A)	0.00
106.30	0.00	(N/A)	0.00
106.40	0.00	(N/A)	0.00
106.50	0.00	(N/A)	0.00
106.60	0.00	(N/A)	0.00
106.70	0.00	(N/A)	0.00
106.80	0.00	(N/A)	0.00
106.90	0.00	(N/A)	0.00
107.00	0.00	(N/A)	0.00
107.10	0.00	(N/A)	0.00
107.20	0.00	(N/A)	0.00
107.30	0.00	(N/A)	0.00
107.40	0.00	(N/A)	0.00
107.45	0.00	(N/A)	0.00
107.50	0.11	(N/A)	0.00
107.60	0.58	(N/A)	0.00
Computation Messages			
HW & TW below			
Inv.El.=107.450			
HW & TW below			
Inv.El.=107.450			
HW & TW below			

InfiltrationBasin.ppc
12/20/2023

Inv.El.=107.450 HW & TW below Inv.El.=107.450

> Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 55 of 80

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Weir - 1 (Rectangular Weir)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Computation Messages HW & TW below Inv.El.=107.450 HW & TW below Inv.El.=107.450

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Return Event: 100 years Storm Event: NOAA-D (8.63 in)

> PondPack CONNECT Edition [10.02.00.01] Page 56 of 80

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Weir - 1 (Rectangular Weir)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Computation Messages HW & TW below Inv.El.=107.450 HW & TW below Inv.El.=107.450

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Return Event: 100 years Storm Event: NOAA-D (8.63 in)

> PondPack CONNECT Edition [10.02.00.01] Page 57 of 80

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Weir - 1 (Rectangular Weir)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Computation Messages HW & TW below Inv.El.=107.450 H=.00; Htw=.00; Qfree=.00; H=.05; Htw=.00; Qfree=.11; H=.15; Htw=.00; Qfree=.58; Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 58 of 80
RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 2 (Orifice-Circular)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface	Flow	Tailwater Elevation	Convergence Error
Elevation	(ft³/s)	(ft)	(ft)
(ft)			
102.00	0.00	(N/A)	0.00
102.10	0.00	(N/A)	0.00
102.20	0.00	(N/A)	0.00
102.30	0.00	(N/A)	0.00
102.40	0.00	(N/A)	0.00
102.50	0.00	(N/A)	0.00
102.60	0.00	(N/A)	0.00
102.70	0.00	(N/A)	0.00
102.80	0.00	(N/A)	0.00
102.90	0.00	(N/A)	0.00
103.00	0.00	(N/A)	0.00
103.10	0.00	(N/A)	0.00
103.20	0.00	(N/A)	0.00
103.30	0.00	(N/A)	0.00
103.40	0.00	(N/A)	0.00
103.50	0.00	(N/A)	0.00
103.60	0.00	(N/A)	0.00
103.70	0.00	(N/A)	0.00
103.80	0.00	(N/A)	0.00
103.90	0.00	(N/A)	0.00
104.00	0.00	(N/A)	0.00
104.10	0.03	(N/A)	0.00
104.20	0.10	(N/A)	0.00
104.30	0.21	(N/A)	0.00
104.40	0.35	(N/A)	0.00
104.50	0.52	(N/A)	0.00
104.60	0.71	(N/A)	0.00
104.70	0.82	(N/A)	0.00
104.80	0.92	(N/A)	0.00
104.90	1.00	(N/A)	0.00
105.00	1.08	(N/A)	0.00
105.10	1.16	(N/A)	0.00
105.20	1.23	(N/A)	0.00
105.30	1.29	(N/A)	0.00
105.40	1.35	(N/A)	0.00
105.50	1.41	(N/A)	0.00
105.60	1.47	(N/A)	0.00
105.70	1.53	(N/A)	0.00

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 59 of 80

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 2 (Orifice-Circular)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
105.80	1.58	(N/A)	0.00
105.90	1.63	(N/A)	0.00
106.00	1.68	(N/A)	0.00
106.10	1.73	(N/A)	0.00
106.20	1.78	(N/A)	0.00
106.30	1.82	(N/A)	0.00
106.40	1.87	(N/A)	0.00
106.50	1.91	(N/A)	0.00
106.60	1.95	(N/A)	0.00
106.70	2.00	(N/A)	0.00
106.80	2.04	(N/A)	0.00
106.90	2.08	(N/A)	0.00
107.00	2.12	(N/A)	0.00
107.10	2.16	(N/A)	0.00
107.20	2.19	(N/A)	0.00
107.30	2.23	(N/A)	0.00
107.40	2.27	(N/A)	0.00
107.45	2.29	(N/A)	0.00
107.50	2.30	(N/A)	0.00
107.60	2.34	(N/A)	0.00
Computation Messages			

HW & TW below invert HW & TW below invert

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 60 of 80

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 2 (Orifice-Circular)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Computation Messages HW & TW below invert HW & TW below invert HW & TW below invert Upstream HW & DNstream TW < Inv.El CRIT.DEPTH CONTROL Vh= .025ft Dcr= .075ft CRIT.DEPTH Hev= .00ft CRIT.DEPTH CONTROL Vh= .052ft Dcr= .148ft CRIT.DEPTH Hev= .00ft CRIT.DEPTH CONTROL Vh= .081ft Dcr= .219ft CRIT.DEPTH Hev= .00ft CRIT.DEPTH CONTROL Vh= .112ft Dcr= .288ft CRIT.DEPTH Hev= .00ft CRIT.DEPTH CONTROL Vh= .148ft Dcr= .352ft CRIT.DEPTH Hev= .00ft H =.31 H =.41 H =.51 H =.61 H =.71 H =.81 H =.91 H =1.01 H =1.11 H =1.21 H =1.31 H =1.41 H =1.51 H =1.61 H =1.71 H =1.81 H = 1.91H =2.01 H =2.11 H =2.21 H =2.31 H =2.41

InfiltrationBasin.ppc

12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Return Event: 100 years Storm Event: NOAA-D (8.63 in)

PondPack CONNECT Edition [10.02.00.01] Page 61 of 80

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 2 (Orifice-Circular)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Computation Messages
H =2.51
H =2.61
H =2.71
H =2.81
H =2.91
H =3.01
H =3.11
H =3.16
H =3.21
H =3.31

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 62 of 80 Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 year

Composite Outflow Summary

Elevation (t) (th) (th) 102.00 102.10 0.00 0.00 (N/A) 0.00 0.00 102.20 102.30 0.00 0.00 (N/A) 0.00 0.00 102.40 102.50 0.00 0.00 (N/A) 0.00 0.00 102.50 0.00 0.00 (N/A) 0.00 102.60 0.00 0.00 (N/A) 0.00 102.60 0.00 0.00 (N/A) 0.00 102.80 0.00 0.00 (N/A) 0.00 103.00 0.00 0.00 (N/A) 0.00 103.10 0.00 0.00 (N/A) 0.00 103.30 0.00 0.01 (N/A) 0.00 103.40 0.00 (N/A)<	Water Surface	Flow	Tailwater Elevation	Convergence Error
(1) 0.00 (N/A) 0.00 102.10 0.00 (N/A) 0.00 102.20 0.00 (N/A) 0.00 102.30 0.00 (N/A) 0.00 102.40 0.00 (N/A) 0.00 102.50 0.00 (N/A) 0.00 102.60 0.00 (N/A) 0.00 102.70 0.00 (N/A) 0.00 102.80 0.00 (N/A) 0.00 103.30 0.00 (N/A) 0.00 103.30 0.00 (N/A) 0.00 103.30 0.00 (N/A) 0.00 103.30 0.00 (N/A) 0.00 103.40 0.00 (N/A) 0.00 103.50 0.00 (N/A) 0.00 103.70 0.00 (N/A) 0.00 103.80 0.02 (N/A) 0.00 104.00 0.10 (N/A) 0.00 104.40 0.53	Elevation	(ft³/s)	(ft)	(ft)
102.10 0.00 (N/A) 0.00 102.20 0.00 (N/A) 0.00 102.30 0.00 (N/A) 0.00 102.40 0.00 (N/A) 0.00 102.40 0.00 (N/A) 0.00 102.50 0.00 (N/A) 0.00 102.70 0.00 (N/A) 0.00 102.70 0.00 (N/A) 0.00 102.70 0.00 (N/A) 0.00 102.70 0.00 (N/A) 0.00 103.00 0.00 (N/A) 0.00 103.30 0.02 (N/A) 0.00 103.30 0.02 (N/A) 0.00 103.40	102.00	0.00	(N/A)	0.00
102.20 0.00 (N/A) 0.00 102.30 0.00 (N/A) 0.00 102.40 0.00 (N/A) 0.00 102.50 0.00 (N/A) 0.00 102.50 0.00 (N/A) 0.00 102.70 0.00 (N/A) 0.00 102.80 0.00 (N/A) 0.00 102.90 0.00 (N/A) 0.00 103.10 0.00 (N/A) 0.00 103.30 0.00 (N/A) 0.00 103.30 0.00 (N/A) 0.00 103.30 0.00 (N/A) 0.00 103.50 0.00 (N/A) 0.00 103.50 0.00 (N/A) 0.00 103.50 0.02 (N/A) 0.00 103.50 0.02 (N/A) 0.00 103.50 0.24 (N/A) 0.00 104.00	102.00	0.00	(N/A) (N/A)	0.00
102.30 0.00 (V/A) 0.00 102.40 0.00 (V/A) 0.00 102.50 0.00 (V/A) 0.00 102.50 0.00 (V/A) 0.00 102.60 0.00 (V/A) 0.00 102.70 0.00 (V/A) 0.00 102.80 0.00 (V/A) 0.00 103.00 0.00 (V/A) 0.00 103.00 0.00 (V/A) 0.00 103.30 0.00 (V/A) 0.00 103.50 0.00 (V/A) 0.00 103.60 0.02 (V/A) 0.00 103.80 0.02 (V/A) 0.00 104.00 0.15 (V/A) 0.00 104.30 0.37 <	102.10	0.00	(N/A)	0.00
102.40 0.00 (V/A) 0.00 102.50 0.00 (V/A) 0.00 102.60 0.00 (V/A) 0.00 102.70 0.00 (V/A) 0.00 102.80 0.00 (V/A) 0.00 102.80 0.00 (V/A) 0.00 103.00 0.00 (V/A) 0.00 103.30 0.00 (V/A) 0.00 103.60 0.02 (V/A) 0.00 103.70 0.00 (V/A) 0.00 103.80 0.02 (V/A) 0.00 104.00 0.10 (V/A) 0.00 104.30 0.37 (V/A) 0.00 104.40 0.53 <	102.20	0.00	(N/A) (N/A)	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	102.30	0.00	(N/A)	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	102.50	0.00	(N/A)	0.00
102.70 0.00 (N/A) 0.00 102.80 0.00 (N/A) 0.00 102.90 0.00 (N/A) 0.00 103.00 0.00 (N/A) 0.00 103.10 0.00 (N/A) 0.00 103.20 0.00 (N/A) 0.00 103.30 0.00 (N/A) 0.00 103.40 0.00 (N/A) 0.00 103.40 0.00 (N/A) 0.00 103.50 0.00 (N/A) 0.00 103.60 0.00 (N/A) 0.00 103.80 0.02 (N/A) 0.00 103.80 0.02 (N/A) 0.00 104.00 0.10 (N/A) 0.00 104.00 0.15 (N/A) 0.00 104.00 0.15 (N/A) 0.00 104.40 0.53 (N/A) 0.00 104.40 0.53 (N/A) 0.00 104.50 0.72 <	102.60	0.00	(N/A)	0.00
102.80 0.00 $(N A)$ 0.00 102.90 0.00 $(N A)$ 0.00 103.00 0.00 $(N A)$ 0.00 103.10 0.00 $(N A)$ 0.00 103.20 0.00 $(N A)$ 0.00 103.30 0.00 $(N A)$ 0.00 103.40 0.00 $(N A)$ 0.00 103.50 0.00 $(N A)$ 0.00 103.60 0.00 $(N A)$ 0.00 103.70 0.00 $(N A)$ 0.00 103.80 0.02 $(N A)$ 0.00 103.80 0.02 $(N A)$ 0.00 104.00 0.10 $(N A)$ 0.00 104.40 0.15 $(N A)$ 0.00 104.40 0.53 $(N A)$ 0.00 104.40 0.53 $(N A)$ 0.00 104.60 0.92 $(N A)$ 0.00 104.60 0.92 $(N A)$ 0.00 105.00	102.70	0.00	(N/A)	0.00
102.90 0.00 $(N A)$ 0.00 103.00 0.00 $(N A)$ 0.00 103.10 0.00 $(N A)$ 0.00 103.20 0.00 $(N A)$ 0.00 103.30 0.00 $(N A)$ 0.00 103.30 0.00 $(N A)$ 0.00 103.40 0.00 $(N A)$ 0.00 103.50 0.00 $(N A)$ 0.00 103.50 0.00 $(N A)$ 0.00 103.70 0.00 $(N A)$ 0.00 103.80 0.02 $(N A)$ 0.00 103.80 0.02 $(N A)$ 0.00 104.00 0.10 $(N A)$ 0.00 104.00 0.15 $(N A)$ 0.00 104.10 0.15 $(N A)$ 0.00 104.20 0.24 $(N A)$ 0.00 104.40 0.53 $(N A)$ 0.00 104.60 0.92 $(N A)$ 0.00 104.60	102.80	0.00	(N/A)	0.00
103.00 0.00 (N/A) 0.00 103.10 0.00 (N/A) 0.00 103.20 0.00 (N/A) 0.00 103.30 0.00 (N/A) 0.00 103.40 0.00 (N/A) 0.00 103.50 0.00 (N/A) 0.00 103.60 0.00 (N/A) 0.00 103.70 0.00 (N/A) 0.00 103.80 0.02 (N/A) 0.00 103.90 0.06 (N/A) 0.00 104.00 0.10 (N/A) 0.00 104.00 0.10 (N/A) 0.00 104.20 0.24 (N/A) 0.00 104.40 0.53 (N/A) 0.00 104.50 0.72 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.70 1.04 (N/A) 0.00 104.80 1.15 (N/A) 0.00 105.00 1.34 (N/A) 0.00 105.00 1.58 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.50 1.79 (N/A) 0.00 105.50 1.91 (N/A) 0.00 105.50 1.91 (N/A) 0.00 105.50 1.91 (N/A) 0.00 105.60 2.09 (N/A) 0.00 105.60 2.09 (N/A) 0.00 105.60	102.90	0.00	(N/A)	0.00
103.10 0.00 (N/A) 0.00 103.20 0.00 (N/A) 0.00 103.30 0.00 (N/A) 0.00 103.50 0.00 (N/A) 0.00 103.50 0.00 (N/A) 0.00 103.60 0.00 (N/A) 0.00 103.70 0.00 (N/A) 0.00 103.80 0.02 (N/A) 0.00 103.90 0.66 (N/A) 0.00 104.00 0.10 (N/A) 0.00 104.10 0.15 (N/A) 0.00 104.20 0.24 (N/A) 0.00 104.30 0.37 (N/A) 0.00 104.40 0.53 (N/A) 0.00 104.40 0.53 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.50 1.25 (N/A) 0.00 104.60 1.25 (N/A) 0.00 105.00 1.34 (N/A) 0.00 105.10 1.42 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.90 1.97 (N/A) 0.00 105.00 2.09 (N/A) 0.00 105.00 2.09 (N/A) 0.00 105.00	103.00	0.00	(N/A)	0.00
103.20 0.00 (V/A) 0.00 103.30 0.00 (V/A) 0.00 103.40 0.00 (V/A) 0.00 103.50 0.00 (V/A) 0.00 103.50 0.00 (V/A) 0.00 103.70 0.00 (V/A) 0.00 103.70 0.00 (V/A) 0.00 103.80 0.02 (V/A) 0.00 104.00 0.10 (V/A) 0.00 104.00 0.10 (V/A) 0.00 104.10 0.15 (V/A) 0.00 104.20 0.24 (V/A) 0.00 104.30 0.37 (V/A) 0.00 104.40 0.53 (V/A) 0.00 104.50 0.72 (V/A) 0.00 105.00 1.34 (V/A) 0.00 105.10 1.42 (V/A) 0.00 105.50 1.72 (V/A) 0.00 105.50 1.72 (V/A) 0.00 105.50 1.79 (V/A) 0.00 105.60 1.79 (V/A) 0.00 105.70 1.85 (V/A) 0.00 105.80 1.91 (V/A) 0.00 105.00 2.14 (V/A) 0.00 106.00	103.10	0.00	(N/A)	0.00
103.300.00 (V/A) 0.00103.400.00 (N/A) 0.00103.500.00 (N/A) 0.00103.600.00 (N/A) 0.00103.700.00 (N/A) 0.00103.800.02 (N/A) 0.00103.900.06 (N/A) 0.00104.000.10 (N/A) 0.00104.100.15 (N/A) 0.00104.200.24 (N/A) 0.00104.300.37 (N/A) 0.00104.400.53 (N/A) 0.00104.500.72 (N/A) 0.00104.600.92 (N/A) 0.00104.801.15 (N/A) 0.00105.001.34 (N/A) 0.00105.101.42 (N/A) 0.00105.501.72 (N/A) 0.00105.501.97 (N/A) 0.00105.501.97 (N/A) 0.00105.501.97 (N/A) 0.00105.501.97 (N/A) 0.00<	103.20	0.00	(N/A)	0.00
103.40 0.00 (V/A) 0.00 103.50 0.00 (V/A) 0.00 103.60 0.00 (V/A) 0.00 103.70 0.00 (V/A) 0.00 103.80 0.02 (V/A) 0.00 103.90 0.06 (V/A) 0.00 104.00 0.10 (V/A) 0.00 104.00 0.15 (V/A) 0.00 104.10 0.15 (V/A) 0.00 104.20 0.24 (V/A) 0.00 104.40 0.53 (V/A) 0.00 104.40 0.53 (V/A) 0.00 104.40 0.53 (V/A) 0.00 104.50 0.72 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.50 1.15 (N/A) 0.00 104.80 1.15 (N/A) 0.00 105.10 1.42 (N/A) 0.00 105.20 1.50 (V/A) 0.00 105.40 1.65 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.50 1.77 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.90 1.97 (N/A) 0.00 105.90 1.97 (N/A) 0.00 105.00 2.14 (N/A) 0.00 105.00 2.14 (N/A) 0.00 105.00 2.14 (N/A) 0.00 105.00	103.30	0.00	(N/A)	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	103.40	0.00	(N/A)	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	103.50	0.00	(N/A)	0.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	103.60	0.00	(N/A)	0.00
103.80 0.02 (N/A) 0.00 103.90 0.06 (N/A) 0.00 104.00 0.10 (N/A) 0.00 104.10 0.15 (N/A) 0.00 104.10 0.15 (N/A) 0.00 104.20 0.24 (N/A) 0.00 104.30 0.37 (N/A) 0.00 104.40 0.53 (N/A) 0.00 104.40 0.53 (N/A) 0.00 104.40 0.53 (N/A) 0.00 104.50 0.72 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.70 1.04 (N/A) 0.00 104.80 1.15 (N/A) 0.00 105.00 1.34 (N/A) 0.00 105.00 1.34 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00	103.70	0.00	(N/A)	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	103.80	0.02	(N/A)	0.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	103.90	0.06	(N/A)	0.00
104.10 0.15 (N/A) 0.00 104.20 0.24 (N/A) 0.00 104.30 0.37 (N/A) 0.00 104.40 0.53 (N/A) 0.00 104.40 0.53 (N/A) 0.00 104.50 0.72 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.70 1.04 (N/A) 0.00 104.80 1.15 (N/A) 0.00 104.90 1.25 (N/A) 0.00 105.10 1.42 (N/A) 0.00 105.20 1.50 (N/A) 0.00 105.30 1.58 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00	104.00	0.10	(N/A)	0.00
104.20 0.24 (N/A) 0.00 104.30 0.37 (N/A) 0.00 104.40 0.53 (N/A) 0.00 104.50 0.72 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.70 1.04 (N/A) 0.00 104.80 1.15 (N/A) 0.00 105.00 1.34 (N/A) 0.00 105.10 1.42 (N/A) 0.00 105.20 1.50 (N/A) 0.00 105.30 1.58 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 105.90 1.97 (N/A) 0.00 105.90 2.03 <	104.10	0.15	(N/A)	0.00
104.30 0.37 (N/A) 0.00 104.40 0.53 (N/A) 0.00 104.50 0.72 (N/A) 0.00 104.50 0.92 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.70 1.04 (N/A) 0.00 104.80 1.15 (N/A) 0.00 105.00 1.34 (N/A) 0.00 105.00 1.42 (N/A) 0.00 105.10 1.42 (N/A) 0.00 105.20 1.50 (N/A) 0.00 105.30 1.58 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 <	104.20	0.24	(N/A)	0.00
104.40 0.53 (N/A) 0.00 104.50 0.72 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.70 1.04 (N/A) 0.00 104.70 1.04 (N/A) 0.00 104.80 1.15 (N/A) 0.00 104.90 1.25 (N/A) 0.00 105.00 1.34 (N/A) 0.00 105.10 1.42 (N/A) 0.00 105.20 1.50 (N/A) 0.00 105.30 1.58 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.00 2.03 <	104.30	0.37	(N/A)	0.00
104.50 0.72 (N/A) 0.00 104.60 0.92 (N/A) 0.00 104.70 1.04 (N/A) 0.00 104.80 1.15 (N/A) 0.00 104.80 1.15 (N/A) 0.00 104.90 1.25 (N/A) 0.00 105.00 1.34 (N/A) 0.00 105.10 1.42 (N/A) 0.00 105.20 1.50 (N/A) 0.00 105.20 1.50 (N/A) 0.00 105.30 1.58 (N/A) 0.00 105.40 1.65 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 <	104.40	0.53	(N/A)	0.00
104.60 0.92 (N/A) 0.00 104.70 1.04 (N/A) 0.00 104.80 1.15 (N/A) 0.00 104.90 1.25 (N/A) 0.00 105.00 1.34 (N/A) 0.00 105.10 1.42 (N/A) 0.00 105.20 1.50 (N/A) 0.00 105.30 1.58 (N/A) 0.00 105.40 1.65 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.30 2.14 (N/A) 0.00	104.50	0.72	(N/A)	0.00
104.70 1.04 (N/A) 0.00 104.80 1.15 (N/A) 0.00 104.90 1.25 (N/A) 0.00 105.00 1.34 (N/A) 0.00 105.10 1.42 (N/A) 0.00 105.20 1.50 (N/A) 0.00 105.30 1.58 (N/A) 0.00 105.40 1.65 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	104.60	0.92	(N/A)	0.00
104.80 1.15 (N/A) 0.00 104.90 1.25 (N/A) 0.00 105.00 1.34 (N/A) 0.00 105.10 1.42 (N/A) 0.00 105.20 1.50 (N/A) 0.00 105.30 1.58 (N/A) 0.00 105.40 1.65 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	104.70	1.04	(N/A)	0.00
104.90 1.25 (N/A) 0.00 105.00 1.34 (N/A) 0.00 105.10 1.42 (N/A) 0.00 105.20 1.50 (N/A) 0.00 105.30 1.58 (N/A) 0.00 105.40 1.65 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	104.80	1.15	(N/A)	0.00
105.00 1.34 (N/A) 0.00 105.10 1.42 (N/A) 0.00 105.20 1.50 (N/A) 0.00 105.30 1.58 (N/A) 0.00 105.40 1.65 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 105.60 2.03 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	104.90	1.25	(N/A)	0.00
105.10 1.42 (N/A) 0.00 105.20 1.50 (N/A) 0.00 105.30 1.58 (N/A) 0.00 105.40 1.65 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 105.00 2.03 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	105.00	1.34	(N/A)	0.00
105.20 1.50 (N/A) 0.00 105.30 1.58 (N/A) 0.00 105.40 1.65 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	105.10	1.42	(N/A)	0.00
105.30 1.58 (N/A) 0.00 105.40 1.65 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	105.20	1.50	(N/A)	0.00
105.40 1.65 (N/A) 0.00 105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	105.30	1.58	(N/A)	0.00
105.50 1.72 (N/A) 0.00 105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	105.40	1.65	(N/A)	0.00
105.60 1.79 (N/A) 0.00 105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	105.50	1.72	(N/A)	0.00
105.70 1.85 (N/A) 0.00 105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	105.60	1.79	(N/A)	0.00
105.80 1.91 (N/A) 0.00 105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	105.70	1.85	(N/A)	0.00
105.90 1.97 (N/A) 0.00 106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	105.80	1.91	(N/A)	0.00
106.00 2.03 (N/A) 0.00 106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	105.90	1.97	(N/A)	0.00
106.10 2.09 (N/A) 0.00 106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	106.00	2.03	(N/A)	0.00
106.20 2.14 (N/A) 0.00 106.30 2.19 (N/A) 0.00	106.10	2.09	(N/A)	0.00
100.00 2.19 (N/A) 0.00	106.20	2.14	(N/A)	0.00
	106.30	2.19	(N/A)	0.00

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 63 of 80

Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
106.40	2.25	(N/A)	0.00
106.50	2.30	(N/A)	0.00
106.60	2.35	(N/A)	0.00
106.70	2.40	(N/A)	0.00
106.80	2.44	(N/A)	0.00
106.90	2.49	(N/A)	0.00
107.00	2.54	(N/A)	0.00
107.10	2.58	(N/A)	0.00
107.20	2.63	(N/A)	0.00
107.30	2.67	(N/A)	0.00
107.40	2.71	(N/A)	0.00
107.45	2.74	(N/A)	0.00
107.50	2.87	(N/A)	0.00
107.60	3.37	(N/A)	0.00

Contributing Structures

5
None Contributing
Orifice - 1
Orifice - 1
Orifice - 1
Orifice - 1 + Orifice - 2
Orifice - 1 + Orifice - 2
Orifice - 1 + Orifice - 2
Orifice - 1 + Orifice - 2
Orifice - 1 + Orifice - 2
Orifice - 1 + Orifice - 2
Orifice - 1 + Orifice - 2
Orifice - 1 + Orifice - 2

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 64 of 80 Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1 Scenario: Post-Development 100 year

Composite Outflow Summary

Contributing Structures Orifice - 1 + Orifice - 2 Orifice - 1 + Orifice - 2Orifice - 1 + Orifice - 2 Orifice - 1 + Orifice - 2 + Weir - 1 Orifice - 1 + Orifice - 2 + Weir - 1 Orifice - 1 + Orifice - 2 + Weir - 1

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Return Event: 100 years Storm Event: NOAA-D (8.63 in)

PondPack CONNECT Edition

[10.02.00.01]

Page 65 of 80

Subsection: Level Pool Pond Routing Summary Label: Infiltration Basin (IN) Scenario: Post-Development 2 year Return Event: 2 years Storm Event: NOAA-D (3.35 in)

Infiltration			
Infiltration Method (Computed)	Constant		
Infiltration Rate (Constant)	0.12 ft³/s		
Initial Conditions			
Elevation (Water Surface, Initial)	102.00 ft		
Volume (Initial)	0.000 ft ³		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	1.000 min		
Inflow/Outflow Hydrograph Sun	nmary		
Flow (Peak In)	2.42 ft ³ /s	Time to Peak (Flow, In)	726.000 min
Infiltration (Peak)	0.12 ft ³ /s	Time to Peak (Infiltration)	640.000 min
Flow (Peak Outlet)	0.25 ft ³ /s	Time to Peak (Flow, Outlet)	751.000 min
Elevation (Water Surface, Peak)	104.21 ft		
Volume (Peak)	2,627.902 ft ³		
Mass Balance (ft ³)			
Volume (Initial)	0.000 ft ³		
Volume (Total Inflow)	7,759.000 ft ³		
Volume (Total Infiltration)	6,554.000 ft ³		
Volume (Total Outlet Outflow)	1,205.000 ft ³		
Volume (Retained)	0.000 ft ³		
Volume (Unrouted)	0.000 ft ³		
Error (Mass Balance)	0.001 %		

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 66 of 80 Subsection: Level Pool Pond Routing Summary Label: Infiltration Basin (IN) Scenario: Post-Development 10 year Return Event: 10 years Storm Event: NOAA-D (5.12 in)

Infiltration			
Infiltration Method (Computed)	Constant		
Infiltration Rate (Constant)	0.12 ft ³ /s		
Initial Conditions		=	
Elevation (Water Surface, Initial)	102.00 ft		
Volume (Initial)	0.000 ft ³		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	1.000 min		
	nmary		
Flow (Peak In)	3.91 ft³/s	Time to Peak (Flow, In)	726.000 min
Infiltration (Peak)	0.12 ft ³ /s	Time to Peak (Infiltration)	575.000 min
Flow (Peak Outlet)	1.35 ft ³ /s	Time to Peak (Flow, Outlet)	730.000 min
Elouation (Water Surface			
Peak)	105.01 ft		
Volume (Peak)	3,729.425 ft ³		
Mass Balance (ft³)			
Volume (Initial)	0.000 ft ³		
Volume (Total Inflow)	12,634.000 ft ³		
Volume (Total Infiltration)	8,161.000 ft ³		
Volume (Total Outlet Outflow)	4,438.000 ft ³		
Volume (Retained)	35.000 ft ³		
Volume (Unrouted)	0.000 ft ³		
Error (Mass Balance)	0.000 %		

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 67 of 80 Subsection: Level Pool Pond Routing Summary Label: Infiltration Basin (IN) Scenario: Post-Development 25 year Return Event: 25 years Storm Event: NOAA-D (6.36 in)

Infiltration			
Infiltration Method (Computed)	Constant		
Infiltration Rate (Constant)	0.12 ft³/s		
Initial Conditions		=	
Elevation (Water Surface, Initial)	102.00 ft		
Volume (Initial)	0.000 ft ³		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	1.000 min		
Inflow/Outflow Hydrograph Sur	nmary		
Flow (Peak In)	4.98 ft ³ /s	Time to Peak (Flow, In)	726.000 min
Infiltration (Peak)	0.12 ft ³ /s	Time to Peak (Infiltration)	538.000 min
Flow (Peak Outlet)	1.86 ft³/s	Time to Peak (Flow, Outlet)	729.000 min
Elevation (Water Surface, Peak)	105.72 ft		
Volume (Peak)	4,634.558 ft ³		
· · ·			
Mass Balance (ft³)			
Volume (Initial)	0.000 ft ³		
Volume (Total Inflow)	16,141.000 ft ³		
Volume (Total Infiltration)	8,623.000 ft ³		
Volume (Total Outlet Outflow)	7,024.000 ft ³		
Volume (Retained)	495.000 ft ³		
Volume (Unrouted)	0.000 ft ³		
Error (Mass Balance)	0.000 %		

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 68 of 80 Subsection: Level Pool Pond Routing Summary Label: Infiltration Basin (IN) Scenario: Post-Development 100 year Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Infiltration			
Infiltration Method (Computed)	Constant		
Infiltration Rate (Constant)	0.12 ft ³ /s		
Initial Conditions			
Elevation (Water Surface, Initial)	102.00 ft		
Volume (Initial)	0.000 ft ³		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	1.000 min		
Inflow/Outflow Undrograph Sur	22221		
	nmary		
Flow (Peak In)	6.96 ft ³ /s	Time to Peak (Flow, In)	726.000 min
Infiltration (Peak)	0.12 ft ³ /s	Time to Peak (Infiltration)	434.000 min
Flow (Peak Outlet)	2.70 π³/s	Time to Peak (Flow, Outlet)	729.000 min
Elevation (Water Surface,	107.36 ft		
Volume (Peak)	6,105.527 ft ³		
Mass Balance (ft ³)			
Volume (Initial)	0.000 ft ³		
Volume (Total Inflow)	22,673.000 ft ³		
Volume (Total Infiltration)	9,258.000 ft ³		
Volume (Total Outlet Outflow)	12,286.000 ft ³		
Volume (Retained)	1,128.000 ft ³		
Volume (Unrouted)	0.000 ft ³		
Error (Mass Balance)	0.000 %		

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 69 of 80 Subsection: Pond Routed Hydrograph (total out) Label: Infiltration Basin (OUT) Scenario: Post-Development 2 year

-

Return Event: 2 years Storm Event: NOAA-D (3.35 in)

Peak Discharge	0.25 ft³/s
Time to Peak	751.000 min
Hydrograph Volume	1,204.637 ft ³

HYDROGRAPH ORDINATES (ft³/s) **Output Time Increment = 1.002 min** Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(min)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
725.000	0.00	0.01	0.04	0.07	0.08
730.000	0.09	0.11	0.12	0.13	0.14
735.000	0.15	0.17	0.18	0.19	0.20
740.000	0.21	0.22	0.22	0.23	0.23
745.000	0.23	0.24	0.24	0.24	0.25
750.000	0.25	0.25	0.25	0.25	0.25
755.000	0.25	0.24	0.24	0.24	0.24
760.000	0.24	0.23	0.23	0.23	0.23
765.000	0.22	0.22	0.22	0.22	0.21
770.000	0.21	0.21	0.20	0.20	0.20
775.000	0.20	0.19	0.19	0.19	0.18
780.000	0.18	0.18	0.17	0.17	0.17
785.000	0.16	0.16	0.16	0.16	0.15
790.000	0.15	0.15	0.15	0.14	0.14
795.000	0.14	0.14	0.14	0.14	0.13
800.000	0.13	0.13	0.13	0.13	0.12
805.000	0.12	0.12	0.12	0.12	0.11
810.000	0.11	0.11	0.11	0.11	0.10
815.000	0.10	0.10	0.10	0.10	0.10
820.000	0.09	0.09	0.09	0.09	0.09
825.000	0.09	0.09	0.08	0.08	0.08
830.000	0.08	0.08	0.08	0.08	0.07
835.000	0.07	0.07	0.07	0.07	0.07
840.000	0.07	0.07	0.06	0.06	0.06
845.000	0.06	0.06	0.06	0.06	0.06
850.000	0.05	0.05	0.05	0.05	0.05
855.000	0.05	0.05	0.05	0.05	0.05
860.000	0.04	0.04	0.04	0.04	0.04
865.000	0.04	0.04	0.04	0.04	0.04
870.000	0.03	0.03	0.03	0.03	0.03
875.000	0.03	0.03	0.03	0.03	0.03
880.000	0.03	0.02	0.02	0.02	0.02
885.000	0.02	0.02	0.02	0.02	0.02
890.000	0.02	0.02	0.02	0.02	0.01
895.000	0.01	0.01	0.01	0.01	0.01
900.000	0.01	0.01	0.01	0.01	0.01
905.000	0.01	0.01	0.01	0.01	0.01
910.000	0.01	0.01	0.01	0.01	0.01
915.000	0.01	0.01	0.01	0.01	0.01
		Bentley S	stems, Inc. Haestad	d Methods Solution	

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center

[10.02.00.01] Page 70 of 80

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Pond Routed Hydrograph (total out) Label: Infiltration Basin (OUT) Scenario: Post-Development 2 year Return Event: 2 years Storm Event: NOAA-D (3.35 in)

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.002 min Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(min)	(ft³/S)	(ft³/S)	(ft³/S)	(ft³/S)	(ft³/s)
920.000	0.01	0.01	0.01	0.00	0.00
925.000	0.00	0.00	0.00	0.00	0.00
930.000	0.00	0.00	0.00	0.00	0.00
935.000	0.00	(N/A)	(N/A)	(N/A)	(N/A)

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 71 of 80 Subsection: Pond Routed Hydrograph (total out) Label: Infiltration Basin (OUT) Scenario: Post-Development 10 year

Return Event: 10 years Storm Event: NOAA-D (5.12 in)

Peak Discharge	1.35 ft³/s
Time to Peak	730.000 min
Hydrograph Volume	4,438.371 ft ³

HYDROGRAPH ORDINATES (ft³/s) **Output Time Increment = 1.002 min** Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(min)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
714.000	0.00	0.01	0.02	0.06	0.09
719.000	0.14	0.21	0.31	0.48	0.71
724.000	0.95	1.09	1.21	1.30	1.34
729.000	1.35	1.35	1.35	1.34	1.34
734.000	1.33	1.31	1.29	1.28	1.26
739.000	1.25	1.22	1.20	1.17	1.15
744.000	1.12	1.10	1.08	1.05	1.03
749.000	1.01	0.99	0.96	0.94	0.90
754.000	0.86	0.82	0.78	0.75	0.72
759.000	0.69	0.67	0.64	0.62	0.60
764.000	0.58	0.56	0.54	0.53	0.51
769.000	0.50	0.49	0.47	0.46	0.45
774.000	0.44	0.43	0.42	0.40	0.39
779.000	0.38	0.37	0.37	0.36	0.35
784.000	0.34	0.34	0.33	0.32	0.31
789.000	0.31	0.30	0.29	0.29	0.28
794.000	0.28	0.27	0.26	0.26	0.25
799.000	0.25	0.24	0.24	0.24	0.23
804.000	0.23	0.22	0.22	0.22	0.21
809.000	0.21	0.21	0.20	0.20	0.19
814.000	0.19	0.19	0.18	0.18	0.18
819.000	0.17	0.17	0.17	0.16	0.16
824.000	0.16	0.15	0.15	0.15	0.15
829.000	0.15	0.14	0.14	0.14	0.14
834.000	0.14	0.14	0.14	0.13	0.13
839.000	0.13	0.13	0.13	0.13	0.13
844.000	0.13	0.12	0.12	0.12	0.12
849.000	0.12	0.12	0.12	0.11	0.11
854.000	0.11	0.11	0.11	0.11	0.11
859.000	0.11	0.10	0.10	0.10	0.10
864.000	0.10	0.10	0.10	0.10	0.10
869.000	0.09	0.09	0.09	0.09	0.09
874.000	0.09	0.09	0.09	0.09	0.09
879.000	0.08	0.08	0.08	0.08	0.08
884.000	0.08	0.08	0.08	0.08	0.08
889.000	0.07	0.07	0.07	0.07	0.07
894.000	0.07	0.07	0.07	0.07	0.06
899.000	0.06	0.06	0.06	0.06	0.06
904.000	0.06	0.06	0.06	0.06	0.05
		Bentley St	stoms Inc. Haesta	Methods Solution	Po

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 72 of 80 Subsection: Pond Routed Hydrograph (total out) Label: Infiltration Basin (OUT) Scenario: Post-Development 10 year Return Event: 10 years Storm Event: NOAA-D (5.12 in)

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.002 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
909.000	0.05	0.05	0.05	0.05	0.05
914.000	0.05	0.05	0.05	0.05	0.05
919.000	0.05	0.04	0.04	0.04	0.04
924.000	0.04	0.04	0.04	0.04	0.04
929.000	0.04	0.04	0.04	0.04	0.04
934.000	0.03	0.03	0.03	0.03	0.03
939.000	0.03	0.03	0.03	0.03	0.03
944.000	0.03	0.03	0.03	0.03	0.03
949.000	0.02	0.02	0.02	0.02	0.02
954.000	0.02	0.02	0.02	0.02	0.02
959.000	0.02	0.02	0.02	0.02	0.02
964.000	0.02	0.02	0.02	0.02	0.02
969.000	0.01	0.01	0.01	0.01	0.01
974.000	0.01	0.01	0.01	0.01	0.01
979.000	0.01	0.01	0.01	0.01	0.01
984.000	0.01	0.01	0.01	0.01	0.01
989.000	0.01	0.01	0.01	0.01	0.01
994.000	0.01	0.01	0.01	0.01	0.01
999.000	0.01	0.01	0.01	0.01	0.01
1,004.000	0.01	0.01	0.01	0.01	0.01
1,009.000	0.01	0.01	0.01	0.01	0.01
1,014.000	0.01	0.01	0.00	0.00	0.00
1,019.000	0.00	0.00	0.00	0.00	0.00
1,024.000	0.00	0.00	0.00	0.00	0.00
1,029.000	0.00	0.00	0.00	0.00	0.00

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 73 of 80 Subsection: Pond Routed Hydrograph (total out) Label: Infiltration Basin (OUT) Scenario: Post-Development 25 year

-

Return Event: 25 years Storm Event: NOAA-D (6.36 in)

Peak Discharge	1.86 ft ³ /s
Time to Peak	729.000 min
Hydrograph Volume	7,023.601 ft ³

HYDROGRAPH ORDINATES (ft³/s) **Output Time Increment = 1.002 min** Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(min)	(ft³/S)	(ft³/S)	(ft³/s)	(ft³/S)	(ft³/S)
702.000	0.00	0.00	0.01	0.01	0.03
/0/.000	0.05	0.07	0.08	0.11	0.14
712.000	0.18	0.24	0.31	0.39	0.51
717.000	0.67	0.84	0.97	1.07	1.16
722.000	1.28	1.40	1.52	1.63	1.74
727.000	1.82	1.86	1.86	1.86	1.85
732.000	1.85	1.84	1.82	1.80	1.78
737.000	1.76	1.75	1.73	1.70	1.67
742.000	1.65	1.62	1.59	1.57	1.54
747.000	1.51	1.49	1.46	1.44	1.41
752.000	1.38	1.35	1.32	1.29	1.26
757.000	1.23	1.20	1.17	1.14	1.11
762.000	1.08	1.05	1.02	0.99	0.96
767.000	0.94	0.90	0.86	0.82	0.79
772.000	0.75	0.72	0.70	0.67	0.65
777.000	0.63	0.60	0.58	0.57	0.55
782.000	0.53	0.51	0.50	0.49	0.47
787.000	0.46	0.45	0.44	0.42	0.41
792.000	0.40	0.39	0.38	0.38	0.37
797.000	0.36	0.35	0.35	0.34	0.33
802.000	0.33	0.32	0.31	0.31	0.30
807.000	0.29	0.29	0.28	0.28	0.27
812.000	0.27	0.26	0.25	0.25	0.24
817.000	0.24	0.24	0.23	0.23	0.23
822.000	0.22	0.22	0.22	0.21	0.21
827.000	0.21	0.20	0.20	0.20	0.20
832.000	0.19	0.19	0.19	0.19	0.18
837.000	0.18	0.18	0.18	0.17	0.17
842.000	0.17	0.17	0.17	0.16	0.16
847.000	0.16	0.16	0.16	0.15	0.15
852.000	0.15	0.15	0.15	0.15	0.15
857.000	0.14	0.14	0.14	0.14	0.14
862.000	0.14	0.14	0.14	0.14	0.13
867.000	0.13	0.13	0.13	0.13	0.13
872.000	0.13	0.13	0.13	0.12	0.12
877.000	0.12	0.12	0.12	0.12	0.12
882.000	0.12	0.12	0.11	0.11	0.11
887.000	0.11	0.11	0.11	0.11	0.11
892.000	0.11	0.10	0.10	0.10	0.10
	•	Bentley Sv	stems Inc. Haestar	Methods Solution	Por

InfiltrationBasin.ppc 12/20/2023

entley Systems, Inc Solution

Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 74 of 80 Subsection: Pond Routed Hydrograph (total out) Label: Infiltration Basin (OUT) Scenario: Post-Development 25 year Return Event: 25 years Storm Event: NOAA-D (6.36 in)

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.002 min Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(min)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
897.000	0.10	0.10	0.10	0.10	0.10
902.000	0.09	0.09	0.09	0.09	0.09
907.000	0.09	0.09	0.09	0.09	0.08
912.000	0.08	0.08	0.08	0.08	0.08
917.000	0.08	0.08	0.08	0.08	0.08
922.000	0.07	0.07	0.07	0.07	0.07
927.000	0.07	0.07	0.07	0.07	0.07
932.000	0.07	0.07	0.07	0.06	0.06
937.000	0.06	0.06	0.06	0.06	0.06
942.000	0.06	0.06	0.06	0.06	0.06
947.000	0.06	0.06	0.05	0.05	0.05
952.000	0.05	0.05	0.05	0.05	0.05
957.000	0.05	0.05	0.05	0.05	0.05
962.000	0.05	0.05	0.05	0.05	0.04
967.000	0.04	0.04	0.04	0.04	0.04
972.000	0.04	0.04	0.04	0.04	0.04
977.000	0.04	0.04	0.04	0.04	0.04
982.000	0.04	0.04	0.04	0.03	0.03
987.000	0.03	0.03	0.03	0.03	0.03
992.000	0.03	0.03	0.03	0.03	0.03
997.000	0.03	0.03	0.03	0.03	0.03
1,002.000	0.03	0.03	0.03	0.03	0.02
1,007.000	0.02	0.02	0.02	0.02	0.02
1,012.000	0.02	0.02	0.02	0.02	0.02
1,017.000	0.02	0.02	0.02	0.02	0.02
1,022.000	0.02	0.02	0.02	0.02	0.02
1,027.000	0.02	0.02	0.02	0.02	0.01
1,032.000	0.01	0.01	0.01	0.01	0.01
1,037.000	0.01	0.01	0.01	0.01	0.01
1,042.000	0.01	0.01	0.01	0.01	0.01
1,047.000	0.01	0.01	0.01	0.01	0.01
1,052.000	0.01	0.01	0.01	0.01	0.01
1,057.000	0.01	0.01	0.01	0.01	0.01
1,062.000	0.01	0.01	0.01	0.01	0.01
1,067.000	0.01	0.01	0.01	0.01	0.01
1,072.000	0.01	0.01	0.01	0.01	0.01
1,077.000	0.01	0.01	0.01	0.01	0.00
1,082.000	0.00	0.00	0.00	0.00	0.00
1,087.000	0.00	0.00	0.00	0.00	0.00
1,092.000	0.00	0.00	0.00	0.00	0.00
1,097.000	0.00	0.00	(N/A)	(N/A)	(N/A)

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 75 of 80 Subsection: Pond Routed Hydrograph (total out) Label: Infiltration Basin (OUT) Scenario: Post-Development 100 year

Return Event: 100 years Storm Event: NOAA-D (8.63 in)

Peak Discharge	2.70 ft³/s
Time to Peak	729.000 min
Hydrograph Volume	12,285.835 ft ³

HYDROGRAPH ORDINATES (ft³/s) **Output Time Increment = 1.002 min** Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(min)	(π³/s)	(π³/S)	(π³/S)	(π³/s)	(π³/s)
672.000	0.00	0.00	0.01	0.01	0.01
677.000	0.02	0.03	0.04	0.05	0.06
682.000	0.07	0.08	0.09	0.10	0.11
687.000	0.13	0.14	0.15	0.17	0.20
692.000	0.22	0.26	0.30	0.34	0.38
697.000	0.42	0.46	0.51	0.55	0.59
702.000	0.63	0.67	0.72	0.79	0.85
707.000	0.91	0.95	0.99	1.04	1.09
712.000	1.14	1.19	1.23	1.28	1.36
717.000	1.45	1.53	1.61	1.69	1.78
722.000	1.89	2.03	2.17	2.32	2.49
727.000	2.62	2.69	2.70	2.69	2.68
732.000	2.67	2.65	2.62	2.59	2.55
737.000	2.52	2.49	2.45	2.41	2.36
742.000	2.32	2.28	2.24	2.21	2.18
747.000	2.15	2.12	2.09	2.06	2.03
752.000	1.99	1.96	1.93	1.89	1.86
757.000	1.83	1.79	1.76	1.73	1.70
762.000	1.67	1.63	1.60	1.57	1.54
767.000	1.51	1.48	1.45	1.42	1.39
772.000	1.36	1.33	1.30	1.27	1.24
777.000	1.21	1.18	1.16	1.13	1.10
782.000	1.07	1.04	1.01	0.98	0.96
787.000	0.93	0.89	0.85	0.81	0.78
792.000	0.75	0.72	0.69	0.67	0.65
797.000	0.63	0.61	0.59	0.57	0.55
802.000	0.54	0.52	0.51	0.50	0.48
807.000	0.47	0.46	0.45	0.44	0.43
812.000	0.42	0.41	0.40	0.39	0.38
817.000	0.37	0.36	0.36	0.35	0.35
822.000	0.34	0.34	0.33	0.32	0.32
827.000	0.32	0.31	0.31	0.30	0.30
832.000	0.29	0.29	0.29	0.28	0.28
837.000	0.28	0.27	0.27	0.27	0.26
842.000	0.26	0.26	0.25	0.25	0.25
847.000	0.25	0.24	0.24	0.24	0.24
852.000	0.24	0.23	0.23	0.23	0.23
857.000	0.23	0.22	0.22	0.22	0.22
862.000	0.22	0.21	0.21	0.21	0.21
	I	Pontlov S	intorna Ina Haaatar	Mothodo Solution	Ba

InfiltrationBasin.ppc 12/20/2023

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 76 of 80 Subsection: Pond Routed Hydrograph (total out) Label: Infiltration Basin (OUT) Scenario: Post-Development 100 year Return Event: 100 years Storm Event: NOAA-D (8.63 in)

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.002 min Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(min)	(π ³ /S)	(π ³ /S)	(π³/s)	(π³/s)	(π³/s)
867.000	0.21	0.21	0.20	0.20	0.20
872.000	0.20	0.20	0.19	0.19	0.19
877.000	0.19	0.19	0.19	0.18	0.18
882.000	0.18	0.18	0.18	0.17	0.17
887.000	0.1/	0.1/	0.17	0.17	0.16
892.000	0.16	0.16	0.10	0.16	0.15
897.000	0.15	0.15	0.15	0.15	0.15
902.000	0.15	0.13	0.14	0.14	0.14
907.000	0.14	0.14	0.14	0.14	0.14
912.000	0.14	0.13	0.13	0.13	0.13
917.000	0.13	0.13	0.13	0.13	0.13
922.000	0.13	0.13	0.12	0.12	0.12
927.000	0.12	0.12	0.12	0.12	0.12
932.000	0.12	0.12	0.12	0.12	0.11
937.000	0.11	0.11	0.11	0.11	0.11
947 000	0.11	0.11	0.11	0.11	0.11
952.000	0.11	0.11	0.10	0.10	0.10
957.000	0.10	0.10	0.10	0.10	0.10
962,000	0.10	0.10	0.10	0.10	0.10
967.000	0.09	0.09	0.09	0.09	0.09
972.000	0.09	0.09	0.09	0.09	0.09
977.000	0.09	0.09	0.09	0.09	0.09
982.000	0.08	0.08	0.08	0.08	0.08
987.000	0.08	0.08	0.08	0.08	0.08
992.000	0.08	0.08	0.08	0.08	0.08
997.000	0.08	0.08	0.08	0.07	0.07
1,002.000	0.07	0.07	0.07	0.07	0.07
1,007.000	0.07	0.07	0.07	0.07	0.07
1,012.000	0.07	0.07	0.07	0.07	0.07
1,017.000	0.07	0.07	0.06	0.06	0.06
1,022.000	0.06	0.06	0.06	0.06	0.06
1,027.000	0.06	0.06	0.06	0.06	0.06
1,032.000	0.06	0.06	0.06	0.06	0.06
1,037.000	0.06	0.05	0.05	0.05	0.05
1,042.000	0.05	0.05	0.05	0.05	0.05
1,047.000	0.05	0.05	0.05	0.05	0.05
1,052.000	0.05	0.05	0.05	0.05	0.05
1,057.000	0.05	0.04	0.04	0.04	0.04
1,062.000	0.04	0.04	0.04	0.04	0.04
1,067.000	0.04	0.04	0.04	0.04	0.04
1,072.000	0.04	0.04	0.04	0.04	0.04
1,077.000	0.04	0.04	0.03	0.03	0.03

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 77 of 80 Subsection: Pond Routed Hydrograph (total out) Label: Infiltration Basin (OUT) Scenario: Post-Development 100 year Return Event: 100 years Storm Event: NOAA-D (8.63 in)

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.002 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
1.082.000	0.03	0.03	0.03	0.03	0.03
1,087.000	0.03	0.03	0.03	0.03	0.03
1,092.000	0.03	0.03	0.03	0.03	0.03
1,097.000	0.03	0.03	0.03	0.02	0.02
1,102.000	0.02	0.02	0.02	0.02	0.02
1,107.000	0.02	0.02	0.02	0.02	0.02
1,112.000	0.02	0.02	0.02	0.02	0.02
1,117.000	0.02	0.02	0.02	0.02	0.02
1,122.000	0.02	0.02	0.02	0.02	0.02
1,127.000	0.02	0.02	0.02	0.02	0.01
1,132.000	0.01	0.01	0.01	0.01	0.01
1,137.000	0.01	0.01	0.01	0.01	0.01
1,142.000	0.01	0.01	0.01	0.01	0.01
1,147.000	0.01	0.01	0.01	0.01	0.01
1,152.000	0.01	0.01	0.01	0.01	0.01
1,157.000	0.01	0.01	0.01	0.01	0.01
1,162.000	0.01	0.01	0.01	0.01	0.01
1,167.000	0.01	0.01	0.01	0.01	0.01
1,172.000	0.01	0.01	0.01	0.01	0.01
1,177.000	0.01	0.01	0.01	0.01	0.01
1,182.000	0.01	0.01	0.01	0.01	0.01
1,187.000	0.01	0.01	0.01	0.01	0.01
1,192.000	0.01	0.01	0.01	0.01	0.01
1,197.000	0.01	0.01	0.01	0.01	0.01
1,202.000	0.01	0.01	0.01	0.01	0.01
1,207.000	0.01	0.01	0.01	0.01	0.01
1,212.000	0.00	0.00	0.00	0.00	0.00
1,217.000	0.00	0.00	0.00	0.00	0.00
1,222.000	0.00	0.00	0.00	0.00	0.00
1,227.000	0.00	0.00	0.00	0.00	0.00
1,232.000	0.00	0.00	0.00	0.00	0.00
1,237.000	0.00	0.00	0.00	0.00	0.00
1,242.000	0.00	0.00	0.00	(N/A)	(N/A)

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 78 of 80 Index

b

basin bypass impervious (Unit Hydrograph Summary, 10 years (Post-Development 10 year))...6, 7

basin bypass impervious (Unit Hydrograph Summary, 100 years (Post-Development 100 year))...10, 11

basin by pass impervious (Unit Hydrograph Summary, 2 years (Post-Development 2 year))...4, 5

basin bypass impervious (Unit Hydrograph Summary, 25 years (Post-Development 25 year))...8, 9

В

Building (Unit Hydrograph Summary, 10 years (Post-Development 10 year))...14, 15

Building (Unit Hydrograph Summary, 100 years (Post-Development 100 year))...18, 19

Building (Unit Hydrograph Summary, 2 years (Post-Development 2 year))...12, 13

Building (Unit Hydrograph Summary, 25 years (Post-Development 25 year))...16, 17

С

Composite Outlet Structure - 1 (Composite Rating Curve, 100 years (Post-Development 100 year))...63, 64, 65

Composite Outlet Structure - 1 (Individual Outlet Curves, 100 years (Post-Development 100 year))...50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62 Composite Outlet Structure - 1 (Outlet Input Data, 100 years (Post-Development 100 year))...48, 49

d

da 1 basin bypass pervious (Unit Hydrograph Summary, 10 years (Post-Development 10 year))...22, 23

da 1 basin bypass pervious (Unit Hydrograph Summary, 100 years (Post-Development 100 year))...26, 27

da 1 basin bypass pervious (Unit Hydrograph Summary, 2 years (Post-Development 2 year)...20, 21

da 1 basin bypass pervious (Unit Hydrograph Summary, 25 years (Post-Development 25 year))...24, 25

Ι

Infiltration Basin (IN) (Level Pool Pond Routing Summary, 10 years (Post-Development 10 year))...67 Infiltration Basin (IN) (Level Pool Pond Routing Summary, 100 years (Post-Development 100 year))...69 Infiltration Basin (IN) (Level Pool Pond Routing Summary, 2 years (Post-Development 2 year))...66 Infiltration Basin (IN) (Level Pool Pond Routing Summary, 25 years (Post-Development 25 year))...68 Infiltration Basin (OUT) (Pond Routed Hydrograph (total out), 10 years (Post-Development 10 year))...72, 73 Infiltration Basin (OUT) (Pond Routed Hydrograph (total out), 100 years (Post-Development 100 year))...76, 77, 78 Infiltration Basin (OUT) (Pond Routed Hydrograph (total out), 2 years (Post-Development 2 year))...70, 71 Infiltration Basin (OUT) (Pond Routed Hydrograph (total out), 25 years (Post-Development 25 year))...74, 75 Bentley Systems, Inc. Haestad Methods Solution InfiltrationBasin.ppc Center 12/20/2023 27 Siemon Company Drive Suite 200 W

Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 79 of 80 Μ

Master Network Summary...2, 3

0

O-1 (Addition Summary, 10 years (Post-Development 10 year))...45

O-1 (Addition Summary, 100 years (Post-Development 100 year))...47

O-1 (Addition Summary, 2 years (Post-Development 2 year))...44

O-1 (Addition Summary, 25 years (Post-Development 25 year))...46

Т

To Pavement-imp (Unit Hydrograph Summary, 10 years (Post-Development 10 year))...30, 31

To Pavement-imp (Unit Hydrograph Summary, 100 years (Post-Development 100 year))...34, 35

To Pavement-imp (Unit Hydrograph Summary, 2 years (Post-Development 2 year))...28, 29

To Pavement-imp (Unit Hydrograph Summary, 25 years (Post-Development 25 year))...32, 33

To pavement-pervious (Unit Hydrograph Summary, 10 years (Post-Development 10 year))...38, 39

To pavement-pervious (Unit Hydrograph Summary, 100 years (Post-Development 100 year))...42, 43

To pavement-pervious (Unit Hydrograph Summary, 2 years (Post-Development 2 year))...36, 37

To pavement-pervious (Unit Hydrograph Summary, 25 years (Post-Development 25 year))...40, 41

InfiltrationBasin.ppc 12/20/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 80 of 80

Summary for Pond 12P: (new Pond)

Volume	Invert	Avail.Storage	Storage Description
#1A	102.00'	2,475 cf	30.25'W x 58.03'L x 5.75'H Field A
			10,094 cf Overall - 3,906 cf Embedded = 6,188 cf x 40.0% Voids
#2A	102.75'	3,906 cf	Cultec R-902HD x 60 Inside #1
			Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf
			Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap
			60 Chambers in 4 Rows
			Cap Storage= 2.8 cf x 2 x 4 rows = 22.1 cf
		6,381 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Pond 12P: (new Pond) - Chamber Wizard Field A

Chamber Model = Cultec R-902HD (Cultec Recharger® 902HD)

Effective Size= 69.8"W x 48.0"H => 17.65 sf x 3.67'L = 64.7 cf Overall Size= 78.0"W x 48.0"H x 4.10'L with 0.44' Overlap Cap Storage= 2.8 cf x 2 x 4 rows = 22.1 cf

78.0" Wide + 9.0" Spacing = 87.0" C-C Row Spacing

15 Chambers/Row x 3.67' Long +0.52' Cap Length x 2 = 56.03' Row Length +12.0" End Stone x 2 = 58.03' Base Length 4 Rows x 78.0" Wide + 9.0" Spacing x 3 + 12.0" Side Stone x 2 = 30.25' Base Width 9.0" Stone Base + 48.0" Chamber Height + 12.0" Stone Cover = 5.75' Field Height

60 Chambers x 64.7 cf + 2.8 cf Cap Volume x 2 x 4 Rows = 3,906.2 cf Chamber Storage

10,094.2 cf Field - 3,906.2 cf Chambers = 6,188.0 cf Stone x 40.0% Voids = 2,475.2 cf Stone Storage

Chamber Storage + Stone Storage = 6,381.4 cf = 0.146 afOverall Storage Efficiency = 63.2%Overall System Size = $58.03' \times 30.25' \times 5.75'$

60 Chambers 373.9 cy Field 229.2 cy Stone

Pond 12P: (new Pond)

Elevation Storage Elevation Storage Elevation Storage (feet) (cubic-feet) (feet) (cubic-feet) (feet) (cubic-feet) 102.00 104.60 3,170 107.20 5,995 0 102.05 35 104.65 3,238 107.25 6,030 102.10 70 104.70 3,307 107.30 6,065 105 3,375 6,100 102.15 104.75 107.35 140 102.20 104.80 3,443 107.40 6,136 102.25 176 104.85 3,510 107.45 6,171 102.30 211 104.90 3,578 107.50 6,206 102.35 246 104.95 3,645 107.55 6,241 102.40 107.60 6,276 281 105.00 3,712 107.65 6,311 102.45 316 105.05 3,779 107.70 6,346 102.50 351 105.10 3,845 386 3,911 6,381 102.55 105.15 107.75 102.60 421 105.20 3,977 456 102.65 4,042 105.25 4,108 102.70 492 105.30 102.75 527 105.35 4,172 102.80 600 105.40 4,236 4,300 102.85 673 105.45 102.90 747 4,364 105.50 821 4,427 102.95 105.55 894 103.00 4,489 105.60 103.05 967 105.65 4,551 1,040 103.10 105.70 4,612 103.15 1,113 105.75 4,673 103.20 1,186 105.80 4,733 103.25 1,259 105.85 4,793 103.30 1,331 105.90 4,852 103.35 1,404 105.95 4,910 103.40 106.00 1,476 4,967 103.45 1,549 5,024 106.05 103.50 1,621 106.10 5,080 103.55 106.15 5,135 1,693 103.60 1,765 106.20 5,189 103.65 1,837 106.25 5,242 103.70 1,908 106.30 5,294 5,344 1,979 106.35 103.75 5,393 2,051 106.40 103.80 5,439 103.85 2,122 106.45 103.90 2,193 106.50 5,484 5,526 103.95 2,264 106.55 5,567 104.00 2,335 106.60 5.605 104.05 2,405 106.65 104.10 2,475 5,643 106.70 104.15 2.545 106.75 5.679 104.20 2,616 106.80 5,714 104.25 2.685 106.85 5,749 104.30 2,755 106.90 5,785 104.35 2,824 106.95 5,820 104.40 2,894 107.00 5,855

104.45

104.50

104.55

2,963

3,032

3,101

107.05

107.10

107.15

5,890

5,925

5,960

Stage-Area-Storage for Pond 12P: (new Pond)

PROJECT NUMBER :	1893	7				
PROJECT NAME :	BULK YA	RD 35				
CALCULATED BY :	KN	DATE:	5/26/2023			
CHECKED BY :		DATE:				
REVISED BY :		DATE:				

TELEPHONE : (732) 312-9800

FAX : (732) 312-9801

1800 ROUTE 34, SUITE 101 WALL, NEW JERSEY 07719

CONDUIT OUTLET PROTECTION WORKSHEET FOR Y = 1/2 Do FOR Y = Do U S E : Y = 1/2 DoSTRUCTURE Q25 TW OR Do q=Q/Do 0.2 D0 (INCH) NUMBER (CFS) THICKNESS Y, In. d50, IN. L, FT. W, FT. D50=(0.0125/Tw) * q^1.33 D50=(0.0082/Tw) * q^1.33 (Ft)* With Filter 0.3 0.2 2.0 15.00 Inlet 11 2.49 30 1.00 0.50 15.0 1.0 12.50 Fabric FOR Y=Do FOR Y=0.5*Do D= 3 * d50 WITHOUT FILTER FABRIC d50=(0.0125/Tw) * q^1.33 d50=(0.0082/Tw) * q^1.33 D= 2 * d50 WITH FILTER FABRIC

Input Values	
1.85	R
0.150	Sy
9.25	Kh
15.125	х
29.015	У
6.96	t
10.00	hi(0)

13.739

3.739

h(max)

∆h(max)

Distance from

Recharge rate (permeability rate) (in/hr) Specific yield, Sy (dimensionless) default value is 0.15; max value is 0.2 provided that a lab test data is submitted Horizontal hydraulic conductivity (in/hr) Kh = 5xRecharge Rate (R) in the costal plan; Kh=R outside the coastal plan 1/2 length of basin (x direction, in feet) 1/2 width of basin (y direction, in feet) Duration of infiltration period (hours) Initial thickness of saturated zone (feet)

Maximum thickness of saturated zone (beneath center of basin at end of infiltration period)

Maximum groundwater mounding (beneath center of basin at end of infiltration period)

Ground-water center of basin in x Mounding, in feet direction, in feet 3.739 0 **Re-Calculate Now** 3.297 10 2.041 20 Groundwater Mounding, in feet 1.060 30 0.495 40 4.000 0.209 50 3.500 0.081 60 70 0.029 3.000 0.011 80 2.500 0.005 90 2.000 1.500 1.000 0.500 0.000 10 20 50 60 70 80 90 100 0 30 40

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

Project Summary	
Title	Bulk Yard 35
Engineer	Kiera Nissen
Company	French and Parrello Associates
Date	4/5/2023

Water Quality Storm Calculations

DA1-approved imp da approved perv

InfiltrationBasin.ppc 6/2/2023

Notes

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 1 of 26

Table of Contents

	Master Network Summary	2
basin bypass impervious		
	Unit Hydrograph Summary, 2 years (Water Quality Storm)	3
	Unit Hydrograph (Hydrograph Table), 2 years (Water Quality Storm)	5
Building		
	Unit Hydrograph Summary, 2 years (Water Quality Storm)	6
	Unit Hydrograph (Hydrograph Table), 2 years (Water Quality Storm)	8
da 1 basin bypass pervious		
	Unit Hydrograph Summary, 2 years (Water Quality Storm)	9
	Unit Hydrograph (Hydrograph Table), 2 years (Water Quality Storm)	11
To Pavement-imp		
	Unit Hydrograph Summary, 2 years (Water Quality Storm)	12
	Unit Hydrograph (Hydrograph Table), 2 years (Water Quality Storm)	14
To pavement-pervious		
	Unit Hydrograph Summary, 2 years (Water Quality Storm)	15
	Unit Hydrograph (Hydrograph Table), 2 years (Water Quality Storm)	17
Infiltration Basin		
	Elevation-Volume-Flow Table (Pond), 2 years (Water Quality Storm)	18
Infiltration Basin (IN)		
	Level Pool Pond Routing Summary, 2 years (Water Quality Storm)	20
Infiltration Basin (INF)		
	Pond Infiltration Hydrograph, 2 years (Water Quality Storm)	21
Infiltration Basin (OUT)		
	Pond Routed Hydrograph (total out), 2 years (Water Quality Storm)	23
Infiltration Basin (IN)		
	Pond Inflow Summary, 2 years (Water Quality Storm)	24
Outlet-1		
	Diverted Hydrograph, 2 years (Water Quality Storm)	25

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft³/s)
Building	Water Quality Storm	2	435.000	66.000	0.36
To Pavement-imp	Water Quality Storm	2	2,032.000	66.000	1.67
To pavement-pervious	Water Quality Storm	2	13.000	72.000	0.01
basin bypass impervious	Water Quality Storm	2	660.000	66.000	0.54
da 1 basin bypass pervious	Water Quality Storm	2	479.000	73.000	0.27

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (min)	Peak Flow (ft³/s)
0-1	Water Quality Storm	2	1,139.000	67.000	0.62

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft ³)	Time to Peak (min)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ft³)
Infiltration Basin (IN)	Water Quality Storm	2	2,480.000	66.000	2.03	(N/A)	(N/A)
Infiltration Basin (OUT)	Water Quality Storm	2	0.000	0.000	0.00	103.70	1,905.000

Subsection: Unit Hydrograph Summary Label: basin bypass impervious Scenario: Water Quality Storm

Return Event: 2 years Storm Event: Water Quality Storm

-		
Storm Event	Water Quality Storm	
Return Event	2	years
Duration	1,440.000	, min
Depth	1.25	in
Time of Concentration (Composite)	3.000	min
Area (User Defined)	7,670.532	ft²
	,	-
Computational Time Increment	0.400	min
Time to Peak (Computed)	66.000	min
Flow (Peak, Computed)	0.54	ft³/s
Output Increment	1.002	min
Time to Flow (Peak Interpolated Output)	66.000	min
Flow (Peak Interpolated Output)	0.54	ft³/s
Drainage Area		
SCS CN (Composite)	98.000	
Area (User Defined)	7,670.532	ft²
Maximum Retention (Pervious)	0.20	in
Maximum Retention (Pervious, 20 percent)	0.04	in
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	1.03	in
Runoff Volume (Pervious)	660.246	ft³
Hydrograph Volume (Area u	nder Hydrograph o	curve)
Volume	660.000	ft³
SCS Unit Hydrograph Paran	peters	
Time of Concentration		
(Composite)	3.000	min
Computational Time Increment	0.400	min
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
Unit peak, qp	3.99	ft³/s
Bentley Systems	, Inc. Haestad Methods Center Company Drive Suite 20	Solution
Watertown, CT	06795 USA +1-203-75	5-1666

PondPack CONNECT Edition [10.02.00.01] Page 3 of 26

InfiltrationBasin.ppc 6/2/2023 Subsection: Unit Hydrograph Summary Label: basin bypass impervious Scenario: Water Quality Storm Return Event: 2 years Storm Event: Water Quality Storm

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	2.000 min
Unit receding limb, Tr	8.000 min
Total unit time, Tb	10.000 min

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 4 of 26 Subsection: Unit Hydrograph (Hydrograph Table) Label: basin bypass impervious Scenario: Water Quality Storm Return Event: 2 years Storm Event: Water Quality Storm

Storm Event	Water Quality Storm
Return Event	2 years
Duration	1,440.000 min
Depth	1.25 in
Time of Concentration (Composite)	3.000 min
Area (User Defined)	7,670.532 ft ²

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.002 min Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(min)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
21.000	0.00	0.00	0.00	0.01	0.01
26.000	0.01	0.01	0.01	0.02	0.02
31.000	0.02	0.02	0.02	0.03	0.03
36.000	0.03	0.03	0.04	0.04	0.04
41.000	0.04	0.04	0.04	0.04	0.05
46.000	0.05	0.05	0.07	0.08	0.08
51.000	0.09	0.10	0.13	0.15	0.16
56.000	0.17	0.21	0.32	0.42	0.47
61.000	0.50	0.51	0.52	0.53	0.54
66.000	0.54	0.51	0.39	0.29	0.24
71.000	0.22	0.20	0.17	0.14	0.13
76.000	0.12	0.12	0.10	0.08	0.08
81.000	0.07	0.07	0.07	0.07	0.07
86.000	0.07	0.07	0.07	0.07	0.07
91.000	0.07	0.07	0.06	0.06	0.05
96.000	0.05	0.05	0.05	0.05	0.05
101.000	0.05	0.05	0.05	0.05	0.05
106.000	0.05	0.05	0.04	0.03	0.02
111.000	0.02	0.02	0.02	0.02	0.02
116.000	0.02	0.02	0.02	0.02	0.02
121.000	0.02	0.01	0.00	0.00	0.00

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 5 of 26 Subsection: Unit Hydrograph Summary Label: Building Scenario: Water Quality Storm

Return Event: 2 years Storm Event: Water Quality Storm

		
Storm Event	Water Quality Storm	
Return Event	2 years	
Duration	1,440.000 min	
Depth	1.25 in	
Time of Concentration (Composite)	1.000 min	
Area (User Defined)	5,055.120 ft ²	
Computational Time Increment	0.133 min	
Time to Peak (Computed)	66.000 min	
Flow (Peak, Computed)	0.36 ft ³ /s	
Output Increment	1.002 min	
Time to Flow (Peak Interpolated Output)	66.000 min	
Flow (Peak Interpolated Output)	0.36 ft³/s	
SCS CN (Composite)	98.000	
Area (User Defined)	5,055.120 ft ²	
Maximum Retention (Pervious)	0.20 in	
Maximum Retention (Pervious, 20 percent)	0.04 in	
Cumulative Runoff		
Cumulative Runoff Depth	1.03 in	
Runoff Volume (Pervious)	435.123 ft ³	
Hydrograph Volume (Area under Hydrograph curve)		
Volume	435.000 ft ³	
SCS Unit Hydrograph Parameters		
Time of Concentration (Composite)	1.000 min	
Computational Time Increment	0.133 min	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Risina, Tr/Tp	1.670	
Unit peak, gp	7.89 ft ³ /s	
Bentley Systems, Ir	nc. Haestad Methods Solution	
Center 27 Siemon Company Drive Suite 200 W		

InfiltrationBasin.ppc 6/2/2023

Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 6 of 26

Subsection: Unit Hydrograph Summary Label: Building Scenario: Water Quality Storm

Return Event: 2 years Storm Event: Water Quality Storm

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	0.667 min
Unit receding limb, Tr	2.667 min
Total unit time, Tb	3.333 min

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 7 of 26
Subsection: Unit Hydrograph (Hydrograph Table) Label: Building Scenario: Water Quality Storm

-

Return Event: 2 years Storm Event: Water Quality Storm

Storm Event	Water Quality Storm
Return Event	2 years
Duration	1,440.000 min
Depth	1.25 in
Time of Concentration (Composite)	1.000 min
Area (User Defined)	5,055.120 ft ²

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.002 min Time on left represents time for first value in each row.

Time (min)	Flow	Flow	Flow	Flow	Flow
20,000	(1073)	(1173)	(11/3)	(11/3)	0.01
20.000	0.00	0.00	0.00	0.00	0.01
25.000	0.01	0.01	0.01	0.01	0.01
30.000	0.01	0.01	0.02	0.02	0.02
35.000	0.02	0.02	0.02	0.03	0.03
40.000	0.03	0.03	0.03	0.03	0.03
45.000	0.03	0.03	0.05	0.06	0.06
50.000	0.06	0.06	0.10	0.11	0.11
55.000	0.12	0.12	0.27	0.33	0.34
60.000	0.34	0.35	0.35	0.35	0.36
65.000	0.36	0.36	0.19	0.14	0.14
70.000	0.14	0.14	0.09	0.08	0.08
75.000	0.08	0.08	0.05	0.05	0.05
80.000	0.05	0.05	0.05	0.05	0.05
85.000	0.05	0.05	0.05	0.05	0.05
90.000	0.05	0.05	0.04	0.03	0.03
95.000	0.03	0.03	0.03	0.03	0.03
100.000	0.03	0.03	0.03	0.03	0.03
105.000	0.03	0.03	0.02	0.01	0.01
110.000	0.01	0.01	0.01	0.01	0.01
115.000	0.01	0.01	0.01	0.01	0.01
120.000	0.01	0.00	0.00	(N/A)	(N/A)

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 8 of 26 Subsection: Unit Hydrograph Summary Label: da 1 basin bypass pervious Scenario: Water Quality Storm

Return Event: 2 years Storm Event: Water Quality Storm

Storm Event	Water Quality			
Return Event	2 years			
Duration	1,440.000 min			
Depth	1.25 in			
Time of Concentration (Composite)	10.000 min			
Area (User Defined)	47,790.000 ft ²			
Computational Time Increment	1.333 min			
Time to Peak (Computed)	73.333 min			
Flow (Peak, Computed)	0.28 ft ³ /s			
Output Increment	1.002 min			
Time to Flow (Peak Interpolated Output)	73.000 min			
Flow (Peak Interpolated Output)	0.27 ft ³ /s			
Drainage Area				
SCS CN (Composite)	77.230			
Area (User Defined)	47,790.000 ft ²			
Maximum Retention (Pervious)	2.95 in			
Maximum Retention (Pervious, 20 percent)	0.59 in			
Cumulative Runoff				
Cumulative Runoff Depth (Pervious)	0.12 in			
Runoff Volume (Pervious)	478.961 ft ³			
Hydrograph Volume (Area under Hydrograph curve)				
	470.000 #2			
volume	4/9.000 ft ³			
SCS Unit Hydrograph Parame	eters			
Time of Concentration (Composite)	10.000 min			
Computational Time Increment	1.333 min			
Unit Hydrograph Shape Factor	483.432			
K Factor	0.749			
Receding/Rising, Tr/Tp	1.670			
Unit peak, qp	7.46 ft ³ /s			
Bentley Systems, I	nc. Haestad Methods Solution			
Center 27 Sjemon Company Drive Suite 200 W				

PondPack CONNECT Edition [10.02.00.01] Page 9 of 26

InfiltrationBasin.ppc 6/2/2023

Watertown, CT 06795 USA +1-203-755-1666

Subsection: Unit Hydrograph Summary Label: da 1 basin bypass pervious Scenario: Water Quality Storm Return Event: 2 years Storm Event: Water Quality Storm

SCS Unit Hydrograph Parameters	
Unit peak time, Tp	6.667 min
Unit receding limb, Tr	26.667 min
Total unit time, Tb	33.333 min

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 10 of 26 Subsection: Unit Hydrograph (Hydrograph Table) Label: da 1 basin bypass pervious Scenario: Water Quality Storm

_

Return Event: 2 years Storm Event: Water Quality Storm

Water Quality Storm
2 years
1,440.000 min
1.25 in
10.000 min
47,790.000 ft ²

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.002 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
61.000	0.00	0.00	0.01	0.02	0.04
66.000	0.08	0.11	0.16	0.20	0.23
71.000	0.26	0.27	0.27	0.27	0.27
76.000	0.25	0.24	0.23	0.22	0.21
81.000	0.19	0.18	0.17	0.16	0.15
86.000	0.14	0.14	0.13	0.13	0.13
91.000	0.13	0.13	0.13	0.12	0.12
96.000	0.12	0.12	0.11	0.11	0.11
101.000	0.11	0.11	0.10	0.10	0.10
106.000	0.10	0.10	0.10	0.10	0.09
111.000	0.09	0.08	0.07	0.06	0.06
116.000	0.05	0.05	0.05	0.04	0.04
121.000	0.04	0.04	0.04	0.03	0.03
126.000	0.02	0.02	0.02	0.01	0.01
131.000	0.01	0.01	0.00	0.00	0.00
136.000	0.00	0.00	0.00	0.00	(N/A)

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 11 of 26 Subsection: Unit Hydrograph Summary Label: To Pavement-imp Scenario: Water Quality Storm

Return Event: 2 years Storm Event: Water Quality Storm

- -				
Storm Event	Water Quality Storm			
Return Event	2	vears		
Duration	1,440.000	, min		
Depth	1.25	in		
Time of Concentration (Composite)	2.000	min		
Area (User Defined)	23,612.000	ft²		
Computational Time Increment	0.267	min		
Time to Peak (Comput	ted) 65.867	min		
Flow (Peak, Computed	l) 1.67	ft³/s		
Output Increment	1.002	min		
Time to Flow (Peak Interpolated Output)	66.000	min		
Flow (Peak Interpolate Output)	ed 1.67	ft³/s		
Drainage Area				
SCS CN (Composite)	98.000			
Area (User Defined)	23,612.000	ft²		
Maximum Retention (Pervious)	0.20	in		
Maximum Retention (Pervious, 20 percent)	0.04	in		
Cumulative Runoff				
Cumulative Runoff De (Pervious)	pth 1.03	in		
Runoff Volume (Pervic	ous) 2,032.418	ft³		
Hudrograph Volume	Aroo undor Hudrograph			
nyurograph volume (Hydrograph Volume (Area under Hydrograph curve)			
Volume 2,032.000 ft ³				
SCS Unit Hydrograph Parameters				
Time of Concentration (Composite)	2.000	min		
Computational Time Increment	0.267	min		
Unit Hydrograph Shap Factor	e 483.432			
K Factor	0.749			
Receding/Rising, Tr/T	0 1.670			
Unit peak, qp	18.43	ft³/s		
Bentley Systems, Inc. Haestad Methods Solution				
27 Wate	27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666			

PondPack CONNECT Edition [10.02.00.01] Page 12 of 26

InfiltrationBasin.ppc 6/2/2023 Subsection: Unit Hydrograph Summary Label: To Pavement-imp Scenario: Water Quality Storm Return Event: 2 years Storm Event: Water Quality Storm

SCS Unit Hydrograph Parameters		
Unit peak time, Tp	1.333 min	
Unit receding limb, Tr 5.333 min		
Total unit time, Tb	6.667 min	

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 13 of 26 Subsection: Unit Hydrograph (Hydrograph Table) Label: To Pavement-imp Scenario: Water Quality Storm Return Event: 2 years Storm Event: Water Quality Storm

Storm Event	Water Quality Storm
Return Event	2 years
Duration	1,440.000 min
Depth	1.25 in
Time of Concentration (Composite)	2.000 min
Area (User Defined)	23,612.000 ft ²

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.002 min Time on left represents time for first value in each row.

Time (min)	Flow	Flow	Flow	Flow	Flow
	(11-75)	(11-75)	(11-75)	(11-75)	(11-75)
20.000	0.00	0.00	0.01	0.02	0.02
25.000	0.03	0.04	0.04	0.05	0.05
30.000	0.05	0.06	0.07	0.08	0.09
35.000	0.10	0.11	0.11	0.12	0.12
40.000	0.12	0.13	0.13	0.14	0.14
45.000	0.15	0.15	0.18	0.24	0.26
50.000	0.28	0.28	0.35	0.46	0.51
55.000	0.53	0.54	0.80	1.28	1.48
60.000	1.56	1.60	1.62	1.64	1.65
65.000	1.66	1.67	1.40	0.90	0.71
70.000	0.66	0.64	0.57	0.44	0.39
75.000	0.38	0.37	0.33	0.26	0.23
80.000	0.22	0.22	0.22	0.21	0.21
85.000	0.21	0.21	0.21	0.21	0.21
90.000	0.21	0.21	0.20	0.17	0.16
95.000	0.16	0.16	0.16	0.16	0.16
100.000	0.16	0.16	0.16	0.16	0.16
105.000	0.16	0.16	0.13	0.08	0.06
110.000	0.06	0.05	0.05	0.05	0.05
115.000	0.05	0.05	0.05	0.05	0.05
120.000	0.05	0.04	0.01	0.00	0.00
125.000	0.00	(N/A)	(N/A)	(N/A)	(N/A)

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 14 of 26 Subsection: Unit Hydrograph Summary Label: To pavement-pervious Scenario: Water Quality Storm

Return Event: 2 years Storm Event: Water Quality Storm

-	
Storm Event	Water Quality Storm
Return Event	2 vears
Duration	1 440 000 min
Denth	1,770.000 mm
Time of Concentration	1.25 11
(Composite)	2.000 min
Area (User Defined)	4,066.925 ft ²
Computational Time Increment	0.267 min
Time to Peak (Computed)	71.467 min
Flow (Peak, Computed)	0.01 ft ³ /s
Output Increment	1.002 min
Time to Flow (Peak	72 000 min
Interpolated Output)	/2.000 11111
Flow (Peak Interpolated Output)	0.01 ft³/s
Drainage Area	
SCS CN (Composite)	70.589
Area (User Defined)	4,066.925 ft ²
Maximum Retention (Pervious)	4.17 in
Maximum Retention (Pervious, 20 percent)	0.83 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.04 in
Runoff Volume (Pervious)	12.740 ft ³
Hydrograph Volume (Area u	nder Hydrograph curve)
Volume	13.000 ft ³
SCS Unit Hydrograph Paran	neters
Time of Concentration (Composite)	2.000 min
Computational Time Increment	0.267 min
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	3.17 ft³/s
Bentley Systems	s, Inc. Haestad Methods Solutio Center
27 Siemon Watertown, CT	Company Drive Suite 200 W 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 15 of 26

InfiltrationBasin.ppc 6/2/2023 Subsection: Unit Hydrograph Summary Label: To pavement-pervious Scenario: Water Quality Storm Return Event: 2 years Storm Event: Water Quality Storm

SCS Unit Hydrograph Parameters			
Unit peak time, Tp	1.333 min		
Unit receding limb, Tr 5.333 min			
Total unit time, Tb	6.667 min		

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 16 of 26 Subsection: Unit Hydrograph (Hydrograph Table) Label: To pavement-pervious Scenario: Water Quality Storm

-

Return Event: 2 years Storm Event: Water Quality Storm

Storm Event	Water Quality Storm
Return Event	2 years
Duration	1,440.000 min
Depth	1.25 in
Time of Concentration (Composite)	2.000 min
Area (User Defined)	4,066.925 ft ²

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.002 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
66.000	0.00	0.00	0.00	0.00	0.01
71.000	0.01	0.01	0.01	0.01	0.01
76.000	0.01	0.01	0.00	0.00	0.00
81.000	0.00	0.00	0.00	0.00	0.00
86.000	0.00	0.00	0.00	0.00	0.00
91.000	0.00	0.00	0.00	0.00	0.00
96.000	0.00	0.00	0.00	0.00	0.00
101.000	0.00	0.00	0.00	0.00	0.00
106.000	0.00	0.00	0.00	0.00	0.00
111.000	0.00	0.00	0.00	0.00	0.00
116.000	0.00	0.00	0.00	0.00	0.00
121.000	0.00	0.00	(N/A)	(N/A)	(N/A)

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 17 of 26 Subsection: Elevation-Volume-Flow Table (Pond) Label: Infiltration Basin Scenario: Water Quality Storm

Return Event: 2 years Storm Event: Water Quality Storm

Constant
0.12 ft ³ /s
102.00 ft
0.000 ft ³
0.00 ft ³ /s
0.00 ft ³ /s
0.00 ft ³ /s
1.000 min

Elevation	Outflow	Storage	Area	Infiltration	Flow (Total)	2S/t + 0
(ft)	(ft³/s)	(ft³)	(ft²)	(ft³/s)	(ft³/s)	(ft³/s)
102.00	0.00	0.000	0.000	0.00	0.00	0.00
102.10	0.00	70.000	0.000	0.12	0.12	2.45
102.20	0.00	140.000	0.000	0.12	0.12	4.79
102.30	0.00	210.500	0.000	0.12	0.12	7.14
102.40	0.00	281.000	0.000	0.12	0.12	9.49
102.50	0.00	351.000	0.000	0.12	0.12	11.82
102.60	0.00	421.000	0.000	0.12	0.12	14.15
102.70	0.00	510.500	0.000	0.12	0.12	17.14
102.80	0.00	600.000	0.000	0.12	0.12	20.12
102.90	0.00	747.000	0.000	0.12	0.12	25.02
103.00	0.00	894.000	0.000	0.12	0.12	29.92
103.10	0.00	1,040.000	0.000	0.12	0.12	34.79
103.20	0.00	1,186.000	0.000	0.12	0.12	39.65
103.30	0.00	1,331.000	0.000	0.12	0.12	44.49
103.40	0.00	1,476.000	0.000	0.12	0.12	49.32
103.50	0.00	1,620.500	0.000	0.12	0.12	54.14
103.60	0.00	1,765.000	0.000	0.12	0.12	58.95
103.70	0.00	1,908.000	0.000	0.12	0.12	63.72
103.80	0.02	2,051.000	0.000	0.12	0.13	68.50
103.90	0.06	2,193.000	0.000	0.12	0.17	73.27
104.00	0.10	2,335.000	0.000	0.12	0.22	78.05
104.10	0.15	2,475.500	0.000	0.12	0.27	82.78
104.20	0.23	2,616.000	0.000	0.12	0.35	87.55
104.30	0.35	2,755.000	0.000	0.12	0.47	92.30
104.40	0.49	2,894.000	0.000	0.12	0.61	97.08
104.50	0.67	3,032.000	0.000	0.12	0.79	101.85
104.60	0.77	3,170.000	0.000	0.12	0.89	106.55
104.70	0.85	3,306.500	0.000	0.12	0.97	111.19
104.80	0.93	3,443.000	0.000	0.12	1.05	115.82

InfiltrationBasin.ppc 6/2/2023

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 18 of 26

Subsection: Elevation-Volume-Flow Table (Pond) Label: Infiltration Basin Scenario: Water Quality Storm Return Event: 2 years Storm Event: Water Quality Storm

Elevation (ft)	Outflow (ft³/s)	Storage (ft ³)	Area (ft²)	Infiltration (ft³/s)	Flow (Total) (ft³/s)	2S/t + 0 (ft³/s)
104.90	1.01	3,577.500	0.000	0.12	1.13	120.38
105.00	1.07	3,712.000	0.000	0.12	1.19	124.93
105.10	1.14	3,844.500	0.000	0.12	1.26	129.41
105.20	1.20	3,977.000	0.000	0.12	1.32	133.88
105.30	1.26	4,106.500	0.000	0.12	1.37	138.26
105.40	1.31	4,236.000	0.000	0.12	1.43	142.63
105.50	1.36	4,362.500	0.000	0.12	1.48	146.90
105.60	1.41	4,489.000	0.000	0.12	1.53	151.17
105.70	1.46	4,611.000	0.000	0.12	1.58	155.28
105.80	1.51	4,733.000	0.000	0.12	1.63	159.39
105.90	1.55	4,850.000	0.000	0.12	1.67	163.34
106.00	1.60	4,967.000	0.000	0.12	1.72	167.28
106.10	1.64	5,078.000	0.000	0.12	1.76	171.03
106.20	1.68	5,189.000	0.000	0.12	1.80	174.77
106.30	1.72	5,291.000	0.000	0.12	1.84	178.21
106.40	1.76	5,393.000	0.000	0.12	1.88	181.65
106.50	1.80	5,480.000	0.000	0.12	1.92	184.59
106.60	1.84	5,567.000	0.000	0.12	1.96	187.53
106.70	1.88	5,640.500	0.000	0.12	2.00	190.02
106.80	1.92	5,714.000	0.000	0.12	2.04	192.50
106.90	1.95	5,784.500	0.000	0.12	2.07	194.89
107.00	1.99	5,855.000	0.000	0.12	2.11	197.27
107.10	2.02	5,925.000	0.000	0.12	2.14	199.64
107.20	2.06	5,995.000	0.000	0.12	2.18	202.01
107.30	2.09	6,065.500	0.000	0.12	2.21	204.39
107.40	2.12	6,136.000	0.000	0.12	2.24	206.78
107.45	2.14	6,171.000	0.000	0.12	2.26	207.96
107.50	2.26	6,206.000	0.000	0.12	2.38	209.25
107.60	2.75	6,276.000	0.000	0.12	2.87	212.07

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 19 of 26 Subsection: Level Pool Pond Routing Summary Label: Infiltration Basin (IN) Scenario: Water Quality Storm Return Event: 2 years Storm Event: Water Quality Storm

Infiltration			
Infiltration Method (Computed)	Constant		
Infiltration Rate (Constant)	0.12 ft ³ /s		
Initial Conditions			
Elevation (Water Surface, Initial)	102.00 ft		
Volume (Initial)	0.000 ft ³		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	1.000 min		
Inflow/Outflow Hydrograph Sum	imary		
Flow (Peak In)	2.03 ft ³ /s	Time to Peak (Flow, In)	66.000 min
Infiltration (Peak)	0.12 ft ³ /s	Time to Peak (Infiltration)	45.000 min
Flow (Peak Outlet)	0.00 ft³/s	Time to Peak (Flow, Outlet)	0.000 min
Elevation (Water Surface			
Peak)	103.70 ft		
Volume (Peak)	1,904.980 ft ³		
Mass Ralance (ft ³)			
Volume (Initial)	0.000 ft ³		
Volume (Total Inflow)	2,480.000 ft ³		
Volume (Total Infiltration)	2,480.000 ft ³		
Volume (Total Outlet Outflow)	0.000 ft ³		
Volume (Retained)	0.000 ft ³		
Volume (Unrouted)	0.000 ft ³		
Error (Mass Balance)	0.000 %		

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 20 of 26 Subsection: Pond Infiltration Hydrograph Label: Infiltration Basin (INF) Scenario: Water Quality Storm

Return Event: 2 years Storm Event: Water Quality Storm

Peak Discharge	0.12 ft ³ /s
Time to Peak	248.000 min
Hydrograph Volume	2,479.339 ft ³

HYDROGRAPH ORDINATES (ft³/s) **Output Time Increment = 1.002 min** Time on left represents time for first value in each row.

	Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	
Ì	21.000	0.00	0.00	0.00	0.00	0.01	
	26.000	0.01	0.01	0.02	0.02	0.03	
	31.000	0.03	0.04	0.04	0.05	0.05	
	36.000	0.06	0.07	0.08	0.08	0.09	
	41.000	0.09	0.10	0.11	0.11	0.12	
	46.000	0.12	0.12	0.12	0.12	0.12	
	51.000	0.12	0.12	0.12	0.12	0.12	
	56.000	0.12	0.12	0.12	0.12	0.12	
	61.000	0.12	0.12	0.12	0.12	0.12	
	66.000	0.12	0.12	0.12	0.12	0.12	
	71.000	0.12	0.12	0.12	0.12	0.12	
	76.000	0.12	0.12	0.12	0.12	0.12	
	81.000	0.12	0.12	0.12	0.12	0.12	
	86.000	0.12	0.12	0.12	0.12	0.12	
	91.000	0.12	0.12	0.12	0.12	0.12	
	96.000	0.12	0.12	0.12	0.12	0.12	
	101.000	0.12	0.12	0.12	0.12	0.12	
	106.000	0.12	0.12	0.12	0.12	0.12	
	111.000	0.12	0.12	0.12	0.12	0.12	
	116.000	0.12	0.12	0.12	0.12	0.12	
	121.000	0.12	0.12	0.12	0.12	0.12	
	126.000	0.12	0.12	0.12	0.12	0.12	
	131.000	0.12	0.12	0.12	0.12	0.12	
	136.000	0.12	0.12	0.12	0.12	0.12	
	141.000	0.12	0.12	0.12	0.12	0.12	
	146.000	0.12	0.12	0.12	0.12	0.12	
	151.000	0.12	0.12	0.12	0.12	0.12	
	156.000	0.12	0.12	0.12	0.12	0.12	
	161.000	0.12	0.12	0.12	0.12	0.12	
	166.000	0.12	0.12	0.12	0.12	0.12	
	171.000	0.12	0.12	0.12	0.12	0.12	
	176.000	0.12	0.12	0.12	0.12	0.12	
	181.000	0.12	0.12	0.12	0.12	0.12	
	186.000	0.12	0.12	0.12	0.12	0.12	
	191.000	0.12	0.12	0.12	0.12	0.12	
	196.000	0.12	0.12	0.12	0.12	0.12	
	201.000	0.12	0.12	0.12	0.12	0.12	
	206.000	0.12	0.12	0.12	0.12	0.12	
	211.000	0.12	0.12	0.12	0.12	0.12	
			Bentley Sv	stems Inc. Haestad	Methods Solution	Pr	յր

InfiltrationBasin.ppc 6/2/2023

entley Systems, Inc Solution

Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 21 of 26 Subsection: Pond Infiltration Hydrograph Label: Infiltration Basin (INF) Scenario: Water Quality Storm Return Event: 2 years Storm Event: Water Quality Storm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.002 min Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
	(113/5)	(113/5)	(113/5)	(113/5)	(113/5)
210.000	0.12	0.12	0.12	0.12	0.12
221.000	0.12	0.12	0.12	0.12	0.12
220.000	0.12	0.12	0.12	0.12	0.12
231.000	0.12	0.12	0.12	0.12	0.12
236.000	0.12	0.12	0.12	0.12	0.12
241.000	0.12	0.12	0.12	0.12	0.12
246.000	0.12	0.12	0.12	0.12	0.12
251.000	0.12	0.12	0.12	0.12	0.12
256.000	0.12	0.12	0.12	0.12	0.12
261.000	0.12	0.12	0.12	0.12	0.12
200.000	0.12	0.12	0.12	0.12	0.12
271.000	0.12	0.12	0.12	0.12	0.12
276.000	0.12	0.12	0.12	0.12	0.12
281.000	0.12	0.12	0.12	0.12	0.12
286.000	0.12	0.12	0.12	0.12	0.12
291.000	0.12	0.12	0.12	0.12	0.12
296.000	0.12	0.12	0.12	0.12	0.12
301.000	0.12	0.12	0.12	0.12	0.12
306.000	0.12	0.12	0.12	0.12	0.12
311.000	0.12	0.12	0.12	0.12	0.12
316.000	0.12	0.12	0.12	0.12	0.12
321.000	0.12	0.12	0.12	0.12	0.12
326.000	0.12	0.12	0.12	0.12	0.12
331.000	0.12	0.12	0.12	0.12	0.12
336.000	0.12	0.12	0.12	0.12	0.12
341.000	0.12	0.12	0.12	0.12	0.12
346.000	0.12	0.12	0.12	0.12	0.12
351.000	0.12	0.12	0.12	0.12	0.12
356.000	0.12	0.12	0.12	0.12	0.12
361.000	0.12	0.12	0.12	0.12	0.12
366.000	0.12	0.12	0.12	0.12	0.12
3/1.000	0.12	0.12	0.12	0.10	0.09
376.000	0.09	0.08	0.07	0.06	0.06
381.000	0.05	0.05	0.04	0.04	0.03
386.000	0.03	0.03	0.03	0.02	0.02
391.000	0.02	0.02	0.02	0.01	0.01
396.000	0.01	0.01	0.01	0.01	0.01
401.000	0.01	0.01	0.01	0.00	0.00
406.000	0.00	0.00	0.00	0.00	0.00
411.000	0.00	0.00	0.00	0.00	0.00
416.000	0.00	0.00	0.00	0.00	0.00

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 22 of 26 Subsection: Pond Routed Hydrograph (total out) Label: Infiltration Basin (OUT) Scenario: Water Quality Storm Return Event: 2 years Storm Event: Water Quality Storm

Peak Discharge	0.00 ft³/s
Time to Peak	480.000 min
Hydrograph Volume	0.000 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.002 min Time on left represents time for first value in each row. Time Flow Flow Flow Flow

(min)	(ft ³ /s)				
0.000	0.00	0.00	(N/A)	(N/A)	(N/A)

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 23 of 26

Return Event: 2 years Storm Event: Water Quality Storm

Summary for Hydrograph Addition at 'Infiltration Basin '

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Building
<catchment node="" outflow="" to=""></catchment>	To pavement-pervious
<catchment node="" outflow="" to=""></catchment>	To Pavement-imp

Node Inflows

Inflow Type	Element	Volume (ft³)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	Building	435.010	66.000	0.36
Flow (From)	To pavement- pervious	12.738	72.000	0.01
Flow (From)	To Pavement- imp	2,032.163	66.000	1.67
Flow (In)	Infiltration Basin	2,479.911	66.000	2.03

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 24 of 26 Subsection: Diverted Hydrograph Label: Outlet-1 Scenario: Water Quality Storm Return Event: 2 years Storm Event: Water Quality Storm

Peak Discharge	0.00 ft³/s
Time to Peak	480.000 min
Hydrograph Volume	0.000 ft ³

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.002 min Time on left represents time for first value in each row.

(min)	(ft ³ /s)				
0.000	0.00	0.00	(N/A)	(N/A)	(N/A)

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 25 of 26

Index

b

basin bypass impervious (Unit Hydrograph (Hydrograph Table), 2 years (Water Quality Storm))...5

basin bypass impervious (Unit Hydrograph Summary, 2 years (Water Quality Storm))...3, 4

В

Building (Unit Hydrograph (Hydrograph Table), 2 years (Water Quality Storm))...8

Building (Unit Hydrograph Summary, 2 years (Water Quality Storm))...6, 7

d

da 1 basin bypass pervious (Unit Hydrograph (Hydrograph Table), 2 years (Water Quality Storm))...11 da 1 basin bypass pervious (Unit Hydrograph Summary, 2 years (Water Quality

Storm))...9, 10

Ι

Infiltration Basin (Elevation-Volume-Flow Table (Pond), 2 years (Water Quality Storm))...18, 19

Infiltration Basin (IN) (Level Pool Pond Routing Summary, 2 years (Water Quality Storm))...20 $\,$

Infiltration Basin (IN) (Pond Inflow Summary, 2 years (Water Quality Storm))...24

Infiltration Basin (INF) (Pond Infiltration Hydrograph, 2 years (Water Quality Storm))...21, 22 Infiltration Basin (OUT) (Pond Routed Hydrograph (total out), 2 years (Water

Quality Storm))...23

М

Master Network Summary...2

0

Outlet-1 (Diverted Hydrograph, 2 years (Water Quality Storm))...25

т

To Pavement-imp (Unit Hydrograph (Hydrograph Table), 2 years (Water Quality Storm))...14 To Pavement-imp (Unit Hydrograph Summary, 2 years (Water Quality Storm))...12, 13 To pavement-pervious (Unit Hydrograph (Hydrograph Table), 2 years (Water Quality Storm))...17 To pavement-pervious (Unit Hydrograph Summary, 2 years (Water Quality Storm))...15, 16

InfiltrationBasin.ppc 6/2/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 26 of 26

State of New Jersey

Division of Water Quality Bureau of Nonpoint Pollution Control 401 East State Street P.O. Box 420 Mail Code 401-02B Trenton, New Jersey 08625-0420 Phone: 609-633-7021 / Fax: 609-777-0432 http://www.state.nj.us/dep/dwq/bnpc_home.htm CATHERINE R. McCABE Commissioner

February 10, 2020

Jeremy Fink, P.E. Principal Product Development Engineer Hydro International 94 Hutchins Drive Portland, ME 04102

Re: MTD Laboratory Certification Up-Flo[®] Filter EMC (Extended Maintenance Cartridge) Off-line Installation

TSS Removal Rate 80%

Dear Mr. Fink:

The Stormwater Management rules under N.J.A.C. 7:8-5.5(b) and 5.7(c) allow the use of manufactured treatment devices (MTDs) for compliance with the design and performance standards at N.J.A.C. 7:8-5 if the pollutant removal rates have been verified by the New Jersey Corporation for Advanced Technology (NJCAT) and have been certified by the New Jersey Department of Environmental Protection (NJDEP). Hydro International has requested a Laboratory Certification for the Up-Flo[®] Filter EMC.

This project falls under the "Procedure for Obtaining Verification of a Stormwater Manufactured Treatment Device from New Jersey Corporation for Advanced Technology" dated January 25, 2013. The applicable protocol is the "New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device" dated January 25, 2013.

NJCAT verification documents submitted to the NJDEP indicate that the requirements of the aforementioned protocol have been met or exceeded. The NJCAT letter also included a recommended certification TSS removal rate and the required maintenance plan. The NJCAT Verification Report with the Verification Appendix (dated January 2020) for this device is published online at http://www.njcat.org/uploads/newDocs/NJCATUPFLOFILTERwithEXTMAINTCARTFINAL.pdf.

PHILIP D. MURPHY Governor

SHEILA Y. OLIVER Lt. Governor The NJDEP certifies the use of the Up-Flo[®] Filter EMC by Hydro International at a TSS removal rate of 80%, when designed, operated and maintained in accordance with the information provided in the Verification Appendix and subject to the following conditions:

- 1. The maximum treatment flow rate (MTFR) for the manufactured treatment device (MTD) is calculated using the New Jersey Water Quality Design Storm (1.25 inches in 2 hrs) in N.J.A.C. 7:8-5.5. The MTFR is calculated based on a verified loading rate of 0.96 gpm/sf of effective filtration treatment area.
- 2. The Up-Flo[®] Filter EMC shall be installed using the same configuration as the unit verified by NJCAT and sized in accordance with the criteria specified in item 6 below.
- 3. This device cannot be used in series with another MTD or a media filter (such as a sand filter), to achieve an enhanced removal rate for total suspended solids (TSS) removal under N.J.A.C. 7:8-5.5.
- 4. Additional design criteria for MTDs can be found in Chapter 9.6 of the New Jersey Stormwater Best Management Practices (NJ Stormwater BMP) Manual which can be found on-line at <u>www.njstormwater.org</u>.
- 5. The maintenance plan for a site using this device shall incorporate, at a minimum, the maintenance requirements for the Up-Flo[®] Filter EMC, which is attached to this document. However, it is recommended to review the maintenance website at https://www.hydro-int.com/sites/default/files/up-flo_filter_emc_operation_maintenance_manual.pdf for any changes to the maintenance requirements.
- 6. Sizing Requirements:

The example below demonstrates the sizing procedure for an Up-Flo[®] Filter EMC. After determining the number of filter modules necessary, the corresponding model selection must be appropriate to hold at least that minimum number of filters.

Example: A 0.25-acre impervious site is to be treated to 80% TSS removal using an Up-Flo[®] Filter EMC. The impervious site runoff (Q) based on the New Jersey Water Quality Design Storm was determined to be 0.79 cfs or 354.58 gpm.

The selection of configuration for use in the Up-Flo[®] Filter EMC is based upon both the MTFR and the maximum inflow drainage area. It is necessary to select the configuration using both methods and to rely on the method that results in the larger configuration determined by the two methods.

Inflow Drainage Area Evaluation:

The drainage area to the Up-Flo[®] Filter EMC in this example is 0.25 acres. Based upon the information in Tables 1 and 2 below, the following minimum

configuration is required for an Up-Flo[®] Filter EMC to treat the impervious area without exceeding the maximum drainage area:

Using Table 2, all vault sizes for the 18", 27", 36" and 48" cartridges would be able to treat runoff without exceeding the maximum allowable drainage area. A minimum of 5, 4, 3, or 2 cartridges for the 18", 27", 36", or 48" cartridge sizes, respectively, would be required to avoid exceeding the maximum allowable drainage area.

Maximum Treatment Flow Rate (MTFR) Evaluation:

The site runoff (Q) was determined based on the following: time of concentration = 10 minutes i = 3.2 in/hr (page 5-8, Fig. 5-3 of the NJ Stormwater BMP Manual) c = 0.99 (runoff coefficient for impervious) Q = ciA = 0.99 x 3.2 x 0.25 = 0.79 cfs = 0.79 x 448.83 gpm/cfs = 354.58 gpm

Based on a flow rate of 354.58 gpm, the following minimum configurations are required for an Up-Flo[®] Filter EMC to treat the impervious area without exceeding the MTFR:

For 18" cartridge: 8 x 18.5 ft. vault size with 66 cartridges For 27" cartridge: 8 x 10 ft. or 6 x 14 ft. vault size with 40 cartridges For 36" cartridge: 8 x 8 ft. or 6 x 10 ft. vault size with 29 cartridges For 48" cartridge: 6 x 8 ft. vault size with 21 cartridges

The MTFR evaluation results will be used since that method results in the higher minimum configuration determined by the two methods.

The sizing table corresponding to the available system models are noted in the Design Specifications and Vault Arrangements noted below.

Individual Cartridge Height (inches)	MTFR (gpm)	MTFR (cfs)	Max Drainage Area Per Cartridge (acre)				
18	5.40	0.012	0.05				
27	8.90	0.020	0.08				
36	12.4	0.028	0.12				
48	17.0	0.038	0.16				

 Table 1: Up-Flo[®] Filter EMC Cartridge Design Specifications

			18-	inch Cartri	idge	27-i	inch Cartr	idge	36-inch Cartridge			48-inch Cartridge		
					Max			Max			Max			Max
Vault		Vault	Max.		Drain	Max.		Drain			Drain	Max.		Drain
Size	Width	Length	No.	MTFR	Area	No.	MTFR	Area	No.	MTFR	Area	No.	MTFR	Area
(ft.)	(ft.)	(ft.)	Carts.	(cfs)	(ac)	Carts.	(cfs)	(ac)	Carts.	(cfs)	(ac)	Carts.	(cfs)	(ac)
4x4	4	4	6	0.071	0.31	6	0.118	0.51	6	0.165	0.71	6	0.227	0.97
4x6	4	6	11	0.134	0.57	11	0.218	0.93	11	0.303	1.29	11	0.417	1.78
4x8	4	8	15	0.180	0.77	15	0.296	1.27	15	0.412	1.76	15	0.568	2.43
6x6	6	6	17	0.205	0.87	17	0.336	1.44	17	0.468	2.00	15	0.568	2.43
6x8	6	8	24	0.290	1.23	24	0.475	2.03	23	0.633	2.70	23	0.871	3.72
6x10	6	10	31	0.374	1.59	30	0.595	2.54	30	0.827	3.53	28	1.061	4.53
6x12	6	12	38	0.459	1.95	37	0.733	3.13	35	0.965	4.12	34	1.288	5.50
6x14	6	14	45	0.541	2.31	44	0.871	3.72	41	1.130	4.82	39	1.477	6.31
8x8	8	8	32	0.385	1.65	31	0.613	2.62	30	0.827	3.53	29	1.098	4.69
8x10	8	10	41	0.495	2.11	40	0.791	3.38	38	1.047	4.47	36	1.364	5.82
8x13	8	13	55	0.664	2.83	49	0.970	4.14	50	1.377	5.88	46	1.742	7.44
8x14	8	14	59	0.711	3.03	57	1.130	4.82	53	1.459	6.23	49	1.856	7.92
8x15	8	15	63	0.760	3.24	61	1.208	5.15	57	1.571	6.70	53	2.007	8.57
8x18.5	8	18.5	80	0.965	4.12	75	1.484	6.34	<mark>70</mark>	1.927	<mark>8.2</mark> 3	64	2.424	10.35
8x24	8	24	102	1.230	5.25	96	1.900	8.11	87	2.397	10.23	79	2.992	12.77

Table 2: Up-Flo[®] Filter EMC Typical Vault Arrangements*

*-Vault sizes are noted with the maximum number of cartridges.

Be advised a detailed maintenance plan is mandatory for any project with a Stormwater BMP subject to the Stormwater Management Rules, N.J.A.C. 7:8. The plan must include all of the items identified in Stormwater Management Rules, N.J.A.C. 7:8-5.8. Such items include, but are not limited to, the list of indication of problems in the system, and training of maintenance personnel. Additional information can be found in Chapter 8: Maintenance and Retrofit of Stormwater Management Management Measures.

If you have any questions regarding the above information, please contact Anthony Robalik or Minesh Patel of my office at (609) 633-7021.

Sincerely,

abiel Mahon

Gabriel Mahon, Chief Bureau of Nonpoint Pollution Control

Attachment: Maintenance Plan

cc: Chron File Richard Magee, NJCAT Vince Mazzei, NJDEP - DLUR James Murphy, NJDEP - BNPC Anthony Robalik NJDEP – BNPC Minesh Patel NJDEP – BNPC

Up-Flo Filter Extended Maintenance Cartridge Operation and Maintenance Manual

October 2019 Rev. A

hydro-int.com

Contents

Overview and Product Description
Operation4
Introduction4
Pollutant Capture4
Best Practices
Damage Due to Lack of Maintenance4
Inspection & Maintenance4
Overview4
Inspection and Maintenance
Routine Inspection
Routine Inspection Procedures5
Routine Maintenance5
Maintenance Scheduling6
Recommended Equipment6
Surface Maintenance Procedure6
Filter Cartridge Replacement7
Up-Flo® Filter Installation Log
Up-Flo® Filter Inspection Log9
Up-Flo® Filter Maintenance Log

Overview and Product Description

The Up-Flo[®] Filter is a modular high-rate stormwater filtration device designed to capture trash, oil, sediment and remove fine pollutants such as particulate metals and nutrients from stormwater runoff. Designed with efficiency, longevity and upkeep in mind, this high performance, low maintenance filter option that offers higher loading rates and longer membrane life for higher quality stormwater for longer periods between servicing. In general, a minimum of two inspections are required per year to monitor sediment and gross pollutant accumulations. In order to achieve an annual TSS removal rate of 80% for the Up-Flo[®] Filter, the minimum maintenance frequency specified in the maintenance section for replacement of the filter inserts and removal of accumulated sediment from the sump is mandatory.

System Components										
A.	Underdrain Coupling	F .	Underdrain							
В.	Outlet Pipe	G.	Cartridge Restraining Cord							
C.	Outlet Bay	Η.	Cartridge Connection Boot							
D.	Inlet Bay	Ι.	Filter Cartridge							
E.	Inlet Pipe									

Figure 1: The Up-Flo® Filter EMC

Operation

Introduction

The Up-Flo[®] Filter operates on simple fluid hydraulics. It is self-activating, has no moving parts, no external power requirements and is fabricated with durable non-corrosive components. Personnel are not required to operate the unit and maintenance is limited to periodic inspections, sediment and floatables removal and cartridge replacement.

Pollutant Capture

The Up-Flo[®] Filter is designed to operate as a "treatment train" by incorporating multiple treatment technologies into a single device. Trash and gross debris are removed by sedimentation and screening before they are introduced to the filtration membranes, delaying surface blinding. The Up-Flo[®] Filter is a wet-sump device. Between storm events, oil and floatables are stored on the water surface separate from the sediment storage volume in the sump.

Best Practices

Good housekeeping upstream of the Up-Flo[®] Filter can significantly extend maintenance interval. For example, sweeping paved surfaces, collecting leaves and grass trimmings, and protecting bare ground from erosion will reduce loading to the system. The filter cartridges should not be installed until construction activities are complete and site stabilization is effective.

Damage Due to Lack of Maintenance

Delayed maintenance would result in clogged filters. In that situation, an Up-Flo[®] Filter could go into bypass and there would be no treatment of the incoming stormwater. Replacement of the filter cartridges and removal of sediment from the sump would restore the Up-Flo[®] Filter to its original treatment efficiency. Establishing and adhering to a regular maintenance schedule ensures optimal performance of the system.

Inspection & Maintenance

Overview

The Up-Flo[®] Filter protects the environment by removing a wide range of pollutants from stormwater runoff. Periodic removal of these captured pollutants is essential to the proper functioning of the Up-Flo[®] Filter.

Replacement of filter cartridges must be performed inside the vessel. A vactor truck is required for removal of oils, water, sediment, and to completely pump out the vessel to allow for maintenance inside. If you are not using Hydro International or a trained service provider, you must follow OSHA (or other regional) Confined Space Entry procedures when entering the Up-Flo[®] vessel.

The minimum required frequency for replacement of the filter cartridges is annually, whereas the minimum required frequency for removal of accumulated sediment from the sump is dependent on the Up-Flo[®] Filter configuration. Configurations with a larger sediment storage volume per module will require less frequent removal of accumulated sediment. Regardless, whenever sediment depth in the sump is found to be greater than 6 inches (15 cm), sediment removal is required.

Inspection and Maintenance

Routine Inspection

Inspection is a simple process that requires monitoring pollutant accumulations. Maintenance crews should be familiar with the Up-Flo[®] Filter and its components prior to inspection.

The following instructions are intended for non-Hydro maintenance service providers and/or those intending to maintain their own Up-Flo[®] Filter:

Routine Inspection Procedures

- 1. Set up any necessary safety equipment (such as traffic cones) to provide access to the Up-Flo[®] Filter. Safety equipment should notify passing pedestrian and road traffic that work is being done.
- 2. Remove the grate or lid to the manhole or vault.
- **3.** Without entering the vessel, look down into the chamber to inspect the inside and to make note of any irregularities.
- **4.** Without entering the vessel, use the pole with the skimmer net to remove floatables and loose debris from the chamber.
- **5.** Using a sediment probe such as a Sludge-Judge[®], measure the depth of sediment that has collected in the sump of the vessel. Maximum sediment depth is 6 inches (15 cm).
- 6. On the Maintenance Log provided by Hydro International, record the date, unit location, estimated volume of floatables and gross debris removed, and the depth of sediment measured. Also note any apparent irregularities such as damaged components or a high standing water level.
- 7. Securely replace the grate or lid.
- 8. Remove safety equipment.
- 9. Contact Hydro International to discuss any irregularities noted during inspection.

Routine Maintenance

The access port located at the top of the manhole or vault provides access to the Up-Flo[®] vessel for maintenance personnel to enter the vessel and remove and replace filter cartridges. The same access would be used for maintenance personnel working from the surface to vactor out sediment, oil, and water (Figure 2). Unless the Up-Flo[®] Filter has been installed in a very shallow configuration, it is necessary to have personnel with OSHA Confined Space Entry training performing the maintenance that occurs inside the vessel.

Maintenance intervals are determined from monitoring the Up-Flo[®] Filter during its first year of operation. Depending on the site, some maintenance activities may have to be performed on a more frequent basis than others.

A vactor truck is normally required for oil removal, removal of sediment from the sump, and to dewater the vessel for replacement of the filter cartridges. All inspection and maintenance activities would be recorded in an Inspection and Maintenance Log.

The access port located at the top of the manhole provides unobstructed access for a vactor hose and/or skimmer pole to be lowered to the base of the sump.

Figure 2: Sediment is removed from the sump with a vactor hose. Confined space entry is not required for this step.

Maintenance Scheduling

- Call Hydro International to order replacement filter cartridges prior to scheduling maintenance.
- Because filter cartridge replacement requires entry into the Up-Flo[®] chamber, maintenance events should be scheduled during dry weather.
- Filter cartridge replacement should occur immediately after a contaminated spill in the contributing drainage area.

Recommended Equipment

- Safety Equipment (traffic cones, etc.)
- Crow bar to remove grate or lid
- Vactor truck (flexible hose preferred)
- Pressure nozzle attachment
- OSHA Confined Space Entry Equipment
- Replacement Up-Flo[®] Filter Cartridges (available from Hydro International)
- Hydro International Up-Flo® Filter Maintenance Log
- Screwdriver (flat head)

Surface Maintenance Procedure

- 1. Set up any necessary safety equipment (such as traffic cones) around the access of the Up-Flo[®] Filter. Safety equipment should notify passing pedestrian and road traffic that work is being done.
- 2. Remove the grate or lid to the manhole or vault.
- 3. Without entering the vessel, look down into the chamber to inspect the inside. Make note of any irregularities.
- 4. Once all floatables and oil have been removed, drop the vactor hose to the base of the sump. Vactor out the sediment and gross debris from the sump floor.

- 5. Retract the vactor hose from the vessel.
- 6. On the Maintenance Log provided by Hydro International, record the date, unit location, estimated volume of floatables, oils, and gross debris removed, and the depth of sediment measured. Note any apparent irregularities such as damaged components or blockages.
- 7. Securely replace the grate or lid. Remove safety equipment.
- 8. Dispose of sediment and gross debris following local regulations.
- 9. Dispose of oil and sump water at a licensed water treatment facility or following local regulations.
- 10. Contact Hydro International to discuss any irregularities noted during cleanout.

Filter Cartridge Replacement

- 1. Following OSHA or region specific Confined Space Entry procedures, enter the Up-Flo[®] Filter Chamber.
- 2. Starting at the end of the filter cartridge row furthest from the Outlet Bay (Figure 1, Item C) remove each Filter Cartridge (Figure 1, Item I) from the Underdrain (Figure 1, Item A) as described below:
 - a. Unfasten Cartridge Restraining Cord (Figure 1, Item G)
 - b. Loosen Cartridge Connection Boot (Figure 1, Item H) using flathead screwdriver
 - c. Remove Filter Cartridge and transfer to surface.
- 3. Starting at the end of the Underdrain closest to the Outlet Bay, install new Filter Cartridges, supplied by Hydro International.
 - Orient Filter Cartridge with the labeled "Pipe Side" facing away from the Outlet Bay.
 - Tighten Cartridge Connection Boot using flathead screwdriver
 - Fasten Cartridge Restraining Cord
- 4. Exit the Up-Flo[®] Filter chamber and securely replace the grate or lid.
- 5. On the Maintenance Log provided by Hydro International, record the date, unit location, estimated volume of floatables, oil and gross debris removed, and the depth of sediment measured. Note the number of filter cartridges replaced. Note any irregularities such as damaged components or blockages.
- 6. Remove safety equipment.
- 7. Return spent filter cartridges to Hydro International for refurbishment.
- 8. Contact Hydro International to discuss any irregularities noted during annual maintenance.

Up-Flo[®] Filter Installation Log

SITE REFERENCE NAME OR NUMBER FOR THIS UP-FLO® FILTER LOCATION:							
SITE NAME:							
SITE LOCATIONS:							
OWNER:	SITE CONTRACTOR:						
CONTACT NAME:	CONTACT NAME:						
COMPANY NAME:	COMPANY NAME:						
ADDRESS:	ADDRESS:						
TELEPHONE:	TELEPHONE:						
FAX:	FAX:						

INSTALLATION DATE: _____/___/

TOTAL NUMBER OF UP-FLO® FILTER CARTRIDGES: _____

Up-Flo® Filter Inspection Log

Site Name:											
Location:											
Owner Name: _											
Address: Phone Number:											
Site Status:											
Date:	ing Maintenance, etc.)										
Inspection Freq	uency Key: A=annual; M=Mo Inspection Items	spection equency	spected? N)	aintenance eded? (Y/N)	ms Comments/ Description						
Debris Removal	Adjacent area free of debris? Inlets and outlets free of debris? Facility (internally) free of debris?	Fr	Ξ×	New York, New Yo							
Vegetation	Surrounding area fully stabilized? Grass mowed?										
Water retention where required	Water holding chamber(s) at normal pool Evidence of erosion?										
Sediment deposition	Filtration chamber free of sediments? Sedimentation sump not more than 50% full?										
Structural components	Any evidence of structural deterioration? Grates in good condition? Spalling or cracking of structural parts? Outlet/overflow spillway										
Other	Noticeable odors? Any evidence of filter(s) clogging? Evidence of flow bypassing facility?										

Inspection Log Page 1 of 2

Inspector Comments:

Overall Condition of Up-Flo® Filter**: Acceptable / Unacceptable

**Acceptable would mean properly functioning; unacceptable would mean damaged or required further maintenance

If any of the above Inspection Items are checked "Yes" for "Maintenance Needed", list Maintenance actions and their completion dates below or on the Maintenance Log provided on page 11 of the Up-Flo[®] Filter Operation & Maintenance Manual:

Maintenance Action Needed									

The next routine inspection is scheduled for approximately: (date)

Inspected by: (signature)

Inspected by: (printed) _____

Inspection Log Page 2 of 2

Up-Flo[®] Filter Maintenance Log

Site Name:
Location:
Owner Name:
Address: Phone Number:
Site Status:
Date: Time: Site Conditions*: *(Stable, Under Construction, Needing Maintenance, etc.)
Estimated volume of oil/floatable trash removed:
Sediment depth measured in sump prior to removal:
Number of Filter Cartridges replaced:
Inspector Comments:
Overall Condition of Up-Flo [®] Filter**: Acceptable / Unacceptable
**Acceptable would mean properly functioning; unacceptable would mean damaged or required further maintenance
Maintained by: (signature)
Maintained by: (printed)

STORM SEWER DESIGN WORK SHEET																		
LOC	CATION					RUNOFF DAT	4				SEWER DESIGN DATA							
STRU	UCTURE		INCREMENTA	L			TIME OF											
NU	IMBER		AREA						۲				PE MATERIAL :	HUPE MAI		1.012		
UPSTREAM	DOWNSTREAM	ov AREA	COEFFICIENT	SUBAREA Ac x C	S TOTAL AREA	Z OVERLAND Z THROUGH AREA, T		TOTAL TC OR TOTAL TC OR Z LONGEST ACCUMULATED TC	NI RAINFALL INTENSIT	S RUNOFF PEAK, Q	DIAMETER	HL DN J FEET	SLOPE %	CAPACITY AT FULL CAPACITY AT FULL	H VELOCITY AT FULL	H VELOCITY ACTUAL,	ELOW TIME	
																		-
1	2	0.03	0.49	0.01	0.01	1.0		1.0	6.38	0.1	15	54	1.00	6.5	5.3	1.9	0.5	
2	4	0.04	0.42	0.02	0.03	1.0	0.5	1.5	6.38	0.2	15	99	1.00	6.5	5.3	2.4	0.7	1. SEE CONSTRUCTION PLANS FOR
3	4	0.14	0.99	0.14	0.14	1.0	1.2	2.2	6.38	0.9	15	66	1.00	6.5	5.3	3.8	0.3	PROFILE INFORMATION
4	5	0.12	0.59	0.07	0.24	1.0	1.5	2.5	6.38	1.5	15	89	1.00	6.5	5.3	4.4	0.3	
5	7	0.08	0.69	0.06	0.30	1.0	1.8	2.8	6.38	1.9	15	98	1.00	6.5	5.3	4.8	0.3	2. ACTUAL DIMENSION FOR PEAK
6	7	0.18	0.85	0.15	0.45	1.0	2.1	3.1	6.38	2.9	15	18	1.00	6.5	5.3	5.4	0.1	RUNOFF,Q IS Ac-IN/HR, HOWEVER Ac- fT/Hr_HOWEVER 1 008 Ac-ft/br IS
7	WQ Device	0.01	0.99	0.01	0.46	1.0	2.2	3.2	6.38	2.9	15	12	1.69	8.4	6.8	6.5	0.0	APPROXIMATELY EQUAL TO 1.0 CFS
8	Basin	0.12	0.99	0.10	0.10	1.0	2.2	3.2	6.38	0.6	6	41	1.00	0.6	2.9	3.5	0.2	-
OCS	9									1.9	15	67	1.00	6.5	5.3	4.8	0.2	
9	10									1.9	15	58	1.00	6.5	5.3	4.8	0.2	3. SEE PLANS FOR PIPE AND INLET
										1.9	15	31	1.00	6.5	5.3	4.8	0.1	-
																		PROJECT NAME : Bulk Yard 35
																		PROJECT NO. : 18937.001
																		STORM FREQUENCY 25 YEAR
																		COMPUTED BY : KAN DATE : 12-12-2023
																		CHECKED BY : DATE :
																		REVISED BY : DATE :
																		FRENCH & PARRELLO ASSOCIATES
													1				1	

LEGEND

IMPERVIOUS GRAVEL PERVIOUS

			Corporate Office: 1800 Rt 34, Suite 101 Wall, New Jersey 07719 732.312.9800 FRENCH & PARRELLO ASSOCIATES		EXISTING (APPROVED 2001 PLAN) DRAINAGE AREA MAP FOR BULK YARD 35 BLOCK 428, LOTS 1,2, & 2.01			
	KN	LBB				BOROUGH (DF SAYREVILLE	
Re	evised By	Checked By			MIDDLESEX COUNTY, NEW JERSEY			Y
<u>6</u> 0					DATE: 1-20-2023	DESIGNED BY: KN	SCALE: 1" = 30'	PROJECT NUMBER 18937.001
			JELENA BALORDA-BAR	ONE, P.E.	DRAWN BY:	CHECKED BY:	FIELD BOOK	SHEET:
			PROFESSIONAL ENGINEER, N.J. LIC. NO	o. 44465	KN	LBB		1 of 1

Corporate Office: 1800 Rt 34, Suite 101 PROPOSED DRAINAGE AREA MAP Wall, New Jersey 07719 732.312.9800 FOR BULK YARD 35 FPAengineers.com FRENCH & PARRELLO BLOCK 428, LOTS 1,2, & 2.01 ASSOCIATES IN New Jersey 🔺 New York 🔺 Pennsylvania 🔺 Georgia BOROUGH OF SAYREVILLE KN LBB MIDDLESEX COUNTY, NEW JERSEY Revised By Checked By DESIGNED BY: SCALE: ROJECT NUMBE 18937.001 1" = 30' 1-20-2023 KN JELENA BALORDA-BARONE, P.E. CHECKED BY: FIELD BOOK DRAWN BY: SHEET: PROFESSIONAL ENGINEER, N.J. LIC. No. 44465 KN LBB 1 of 1

			FPA	<u>Corporate Office:</u> 1800 Rt 34, Suite 101 Wall, New Jersey 07719 732.312.9800	INI	INLET DRAINAGE AREA MAP FOR BULK YARD 35 BLOCK 428, LOTS 1,2, & 2.01		
			FRENCH & PARRELLO Associates	FPAengineers.com	BL			
			New Jersey 🔺 New York 🔺 Penns	sylvania 🔺 Georgia			IN	
	KN	LBB				BOROUGH C	F SAYREVILLE	
	Revised By	Checked By			MIDDLESEX COUNTY, NEW JERSEY			
<u>6</u> 0					DATE: 1-20-2023	DESIGNED BY: KN	SCALE: 1" = 30'	PROJECT NUMBER: 18937.001
			JELENA BALORDA-BAR	UNE, P.E.	DRAWN BY:	CHECKED BY:	FIELD BOOK	SHEET:
			PROFESSIONAL ENGINEER, N.J. LIC. No	. 44465	KN	LBB		1 of 1