DRAINAGE STATEMENT

for

TESLA MOTORS, INC.

Block 440, Lot 3.01 969 Route 9 Borough of Sayreville Middlesex County, New Jersey

Prepared by:

1904 Main Street Lake Como, NJ 07719 (732) 974-0198

Matthew Sharo, PE, PP NJ Professional Engineer License #52989

> March 2022 DEC #1990-99-010

TABLE OF CONTENTS

I.	Site Description	3
II.	Design Overview	3
III.	Existing Drainage Conditions	4
IV.	Proposed Drainage Conditions	4
V.	Runoff Rate Performance	4
VI.	Conclusion	5

APPENDIX

- Stormwater Management, Groundwater Recharge and Water Quality Analysis, prepared by Dynamic Engineering Consultants, PC, dated November 2016, last revised June 2018 (Attached Separately)
- Hydrograph Summary Reports Existing and Proposed Conditions 2yr, 10yr, 25yr & 100yr

I. SITE DESCRIPTION

The subject site is located at 969 Route 9 in the Borough of Sayreville, Middlesex County, New Jersey. The site is identified as Block 440, Lot 3.01 on the Borough of Sayreville Tax Map Sheet #118. The subject site is currently developed with an existing Wawa Food Market & Fueling Station. The existing conditions of the site have been verified by the As-Built Survey, prepared by Dynamic Survey, LLC, dated August 31, 2021.

The proposed site improvements consist of redeveloping the existing parking area in the northern portion of the site with eight (8) Tesla charging stations/stalls and the relocation of two (2) air pump parking stalls.

II. DESIGN OVERVIEW

This statement has been prepared to define and analyze the stormwater drainage conditions that would occur as a result of the proposed site improvements of the subject site, as well as demonstrate compliance with the applicable stormwater requirements set forth by the Borough of Sayreville Land Use Ordinance and NJAC 7:8.

The proposed site improvements within the limit of disturbance proposes a de-minimus increase in impervious surface coverage, therefore, this Drainage Statement identifies and describes the manner by which the design and performance measures set forth by NJAC 7:8 and the Borough of Sayreville Ordinance are achieved to minimize the adverse impact of stormwater runoff quantity in receiving water bodies and to maintain consistency with the existing drainage patterns and on-site stormwater system.

It is important to note, since the proposed site improvements do not result in more than one (1) acre of land disturbance or $\frac{1}{4}$ (0.25) acre or more increase of motor vehicle impervious coverage; therefore, the water quantity, quality and groundwater recharge requirements of NJAC 7:8 are not applicable to this project.

III. EXISTING DRAINAGE CONDITIONS

The existing conditions of the tract have been verified by the As-Built Survey, prepared by Dynamic Survey, LLC, dated August 31, 2021.

The stormwater runoff generated in the proposed redevelopment area currently drains in a northerly direction and is collected by the on-site stormwater conveyance system and is tributary to the existing/previously approved basin adjacent to Old Cheesequake Road. The stormwater runoff is ultimately tributary to the existing stormwater conveyance system within Old Cheesequake Road.

IV. PROPOSED DRAINAGE CONDITIONS

The proposed site improvements have been designed in order to maintain the existing drainage patterns. Therefore, the stormwater runoff generated by the proposed disturbance area will continue to drain in a northerly direction for collection by the on-site stormwater conveyance system and tributary to the existing/previously approved basin adjacent to Old Cheesequake Road. The stormwater runoff is ultimately tributary to the existing stormwater conveyance system within Old Cheesequake Road.

V. RUNOFF RATE PERFORMANCE

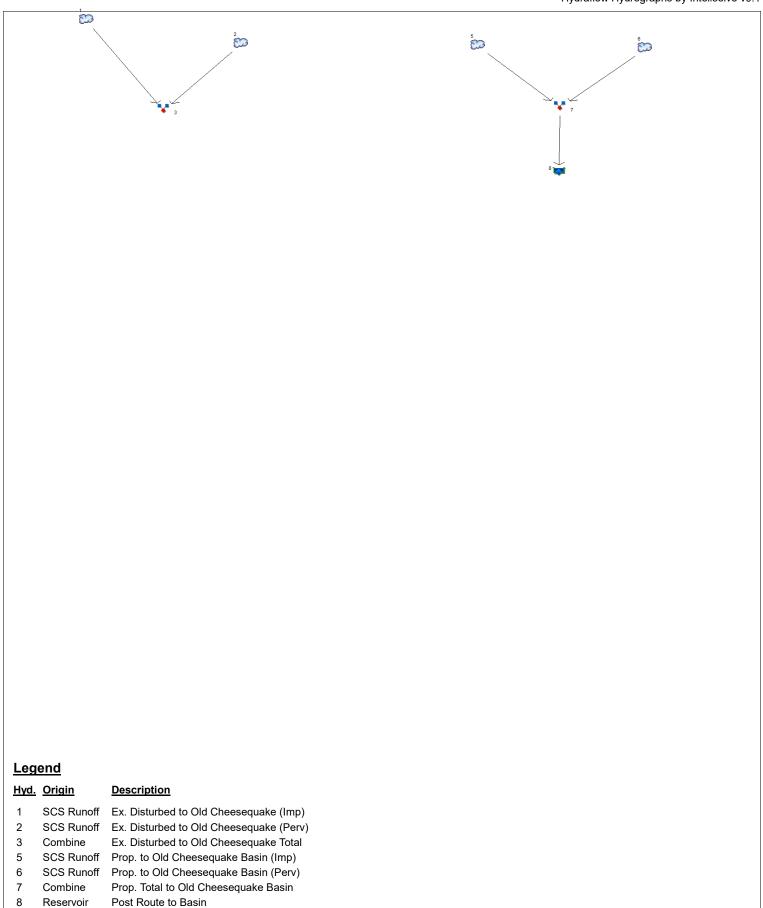
The following is a comparison of the existing and proposed condition runoff rates to the existing/previously approved Old Cheesequake Road Basin:

	Runoff for Old Cheesequake Road Basin						
Design Storm	Ex. Disturbed Peak Flow (cfs)	Reduction (%)	Total Allowable Peak Flow (cfs)	Total Previously Approved Peak Flow (cfs)	Total Proposed Peak Flow (cfs)	Total Peak Flow Increase (cfs)	
2-Yr	0.425	50	0.213	0.133	0.134	0.001	
10-Yr	0.653	25	0.490	0.308	0.317	0.009	
25-Yr	0.813	-	0.813	0.443	0.449	0.006	
100-Yr	1.134	20	0.907	0.610	0.616	0.006	

Pre and Post Development Runoff Summary

VI. CONCLUSION

The proposed site improvements and de-minimum increase in impervious coverage have been designed with provisions for the safe and efficient control of stormwater runoff in a manner that will not adversely impact the previously approved drainage patterns, stormwater basins, adjacent roadways or adjacent parcels. In addition, the proposed site improvements do not result in more than one (1) acre of land disturbance or ¹/₄ (0.25) acre or more increase of motor vehicle impervious coverage; therefore, the water quantity, quality and groundwater recharge requirements of NJAC 7:8 are not applicable to this project. With that stated, it is evident that the proposed site improvements will not have a negative impact on the existing and previously approved drainage patterns on-site or within the vicinity of the subject parcel.


APPENDIX

STORMWATER MANAGEMENT, GROUNDWATER RECHARGE AND WATER QUALITY ANALYSIS, PREPARED BY DYNAMIC ENGINEERING CONSULTANTS, PC, DATED NOVEMBER 2016, LAST REVISED JUNE 2018 (ATTACHED SEPARATELY)

HYDROGRAPH SUMMARY REPORTS – EXISTING AND PROPOSED CONDITIONS 2YR, 10YR, 25YR & 100YR

Watershed Model Schematic

Hydraflow Hydrographs by Intelisolve v9.1

Project: 2, 10, 25, 100 YR.gpw

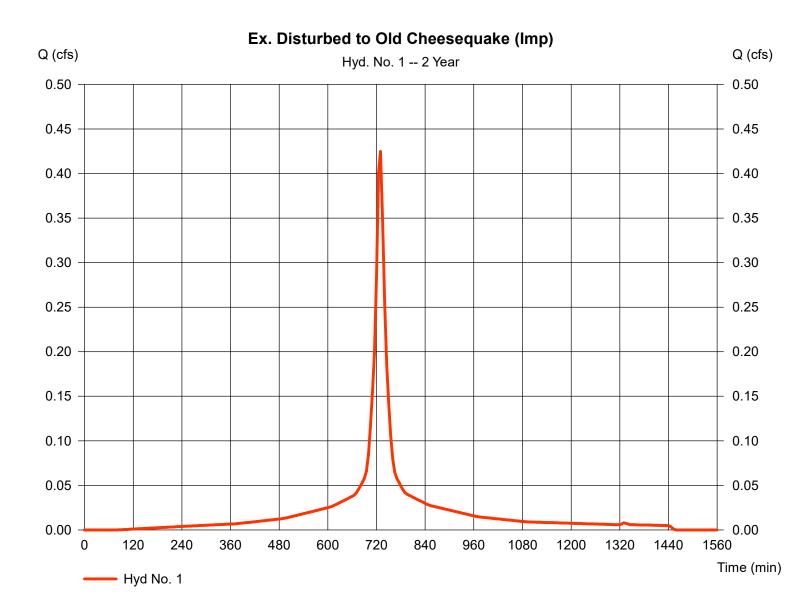
Hydrograph Return Period Recap

Hydraflow Hydrographs by Intelisolve v9.1

lyd.	Hydrograph	Inflow	Peak Outflow (cfs)							Hydrograph		
lo.	type (origin)	Hyd(s)	1-Yr	2-Yr	3-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	description	
1	SCS Runoff			0.425			0.653	0.813		1.105	Ex. Disturbed to Old Cheesequake (I	
2	SCS Runoff			0.000			0.006	0.039		0.349	Ex. Disturbed to Old Cheesequake (F	
3	Combine	1, 2		0.425			0.653	0.813		1.134	Ex. Disturbed to Old Cheesequake To	
5	SCS Runoff			3.114			4.791	5.963		8.105	Prop. to Old Cheesequake Basin (Im	
6	SCS Runoff			0.001			0.038	0.203		0.826	Prop. to Old Cheesequake Basin (Pe	
7	Combine	5, 6		3.114			4.791	6.074		8.911	Prop. Total to Old Cheesequake Bas	
8	Reservoir	7		0.134			0.317	0.449		0.616	Post Route to Basin	

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

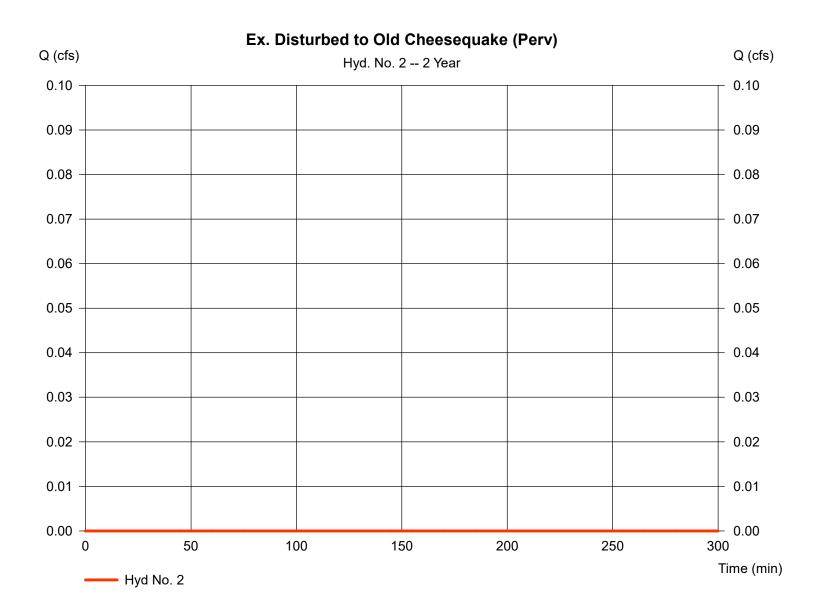

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	0.425	5	730	1,909				Ex. Disturbed to Old Cheesequake (I
2	SCS Runoff	0.000	5	n/a	0				Ex. Disturbed to Old Cheesequake (F
3	Combine	0.425	5	730	1,909	1, 2			Ex. Disturbed to Old Cheesequake To
5	SCS Runoff	3.114	5	730	14,002				Prop. to Old Cheesequake Basin (Im
6	SCS Runoff	0.001	5	1330	10				Prop. to Old Cheesequake Basin (Pe
7	Combine	3.114	5	730	14,011	5, 6			Prop. Total to Old Cheesequake Basi
8	Reservoir	0.134	5	935	14,002	7	108.45	8,907	Post Route to Basin

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 1

Ex. Disturbed to Old Cheesequake (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.425 cfs
Storm frequency	= 2 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 1,909 cuft
Drainage area	= 0.180 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 3.35 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

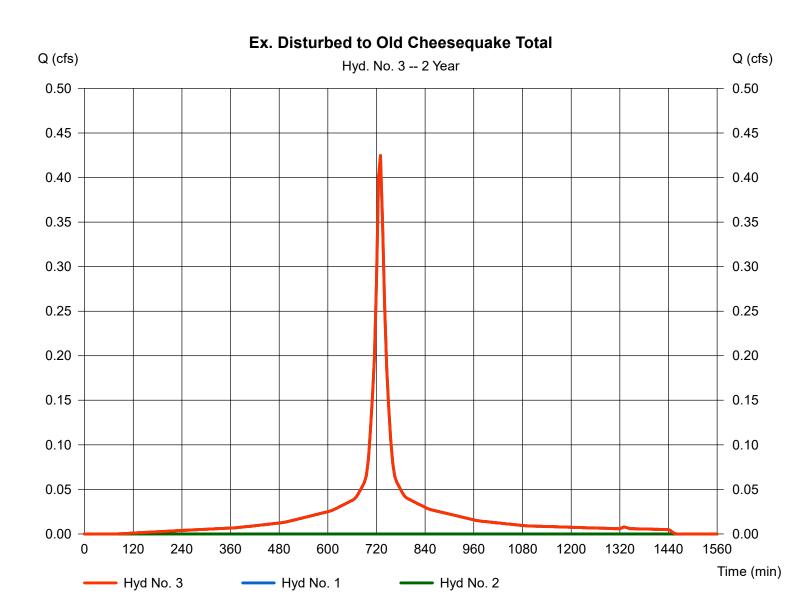

4

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

Ex. Disturbed to Old Cheesequake (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 5 min	Hyd. volume	= 0 cuft
Drainage area	= 1.990 ac	Curve number	= 31
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 37.00 min
Total precip.	= 3.35 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

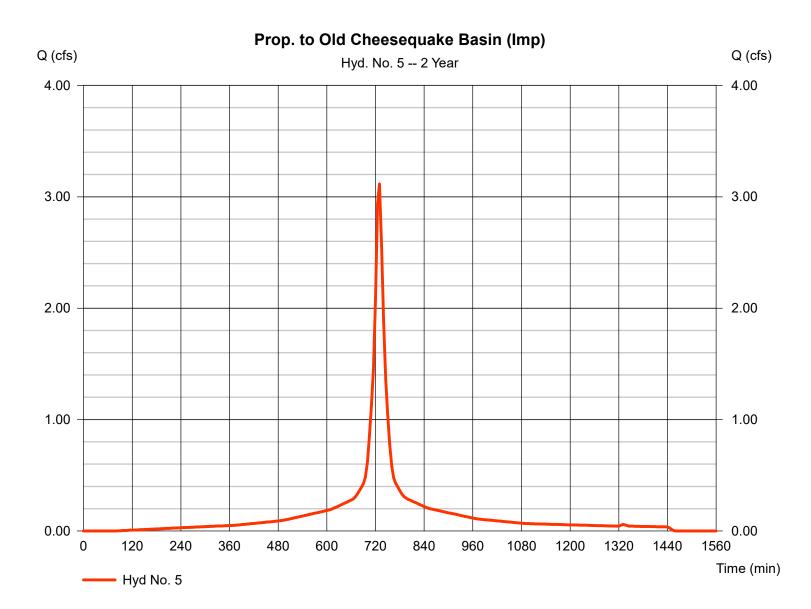


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

Ex. Disturbed to Old Cheesequake Total

Hydrograph type	= Combine	Peak discharge	= 0.425 cfs
Storm frequency	= 2 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 1,909 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	a = 2.170 ac

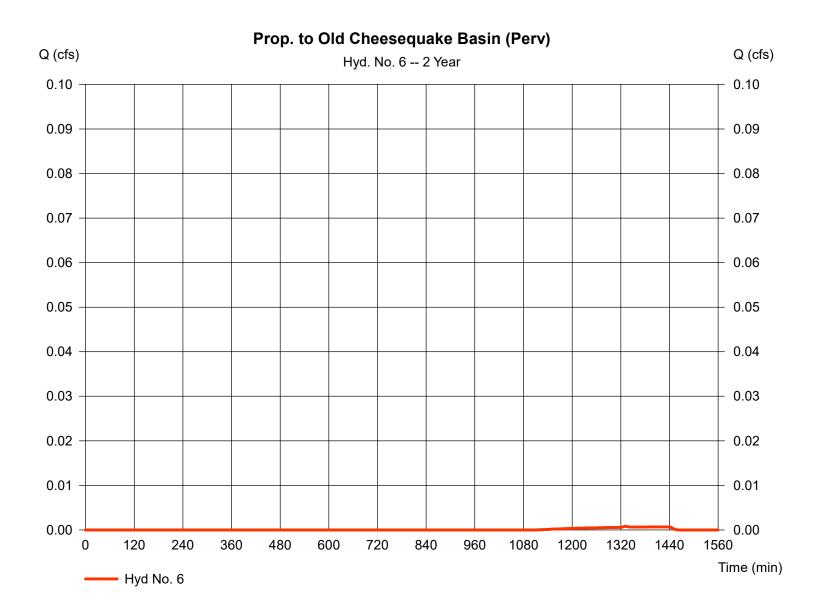


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 5

Prop. to Old Cheesequake Basin (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.114 cfs
Storm frequency	= 2 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 14,002 cuft
Drainage area	= 1.320 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 3.35 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

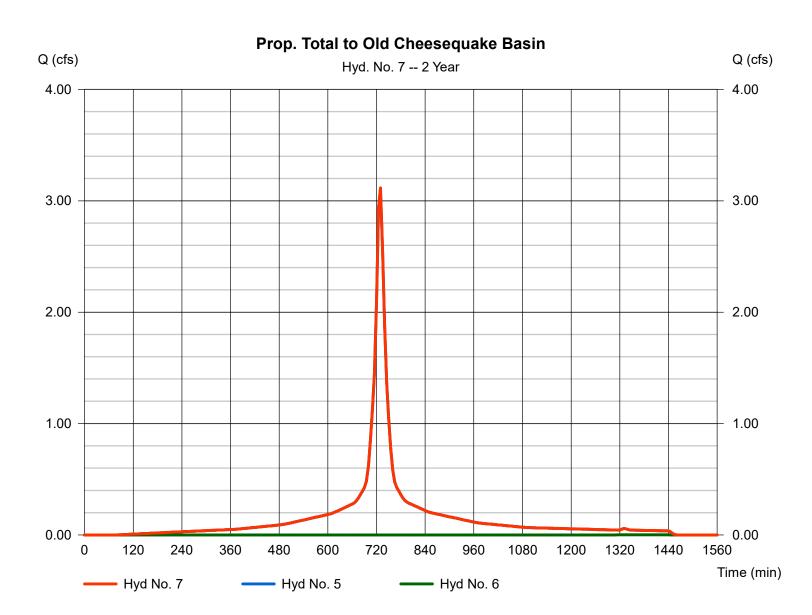


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 6

Prop. to Old Cheesequake Basin (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.001 cfs
Storm frequency	= 2 yrs	Time to peak	= 1330 min
Time interval	= 5 min	Hyd. volume	= 10 cuft
Drainage area	= 0.920 ac	Curve number	= 39
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 3.35 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484
		-	

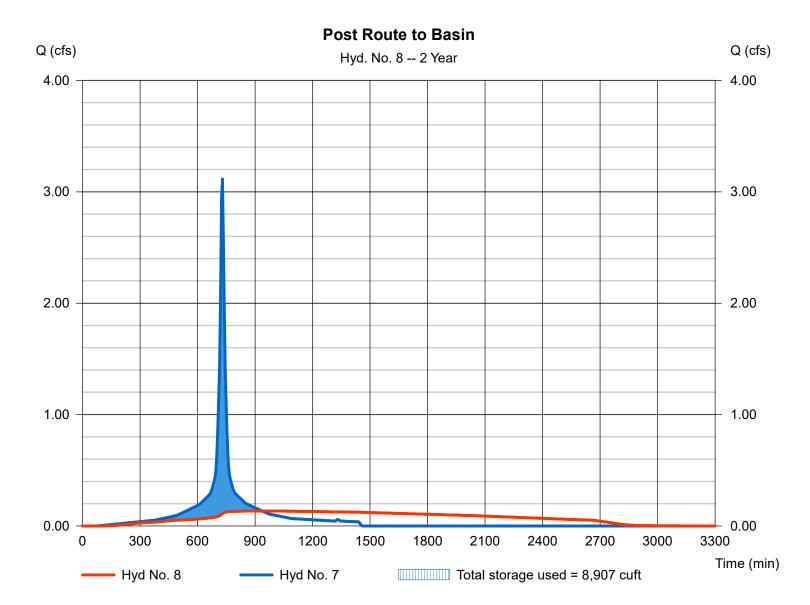


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 7

Prop. Total to Old Cheesequake Basin

Hydrograph type	= Combine	Peak discharge	= 3.114 cfs
Storm frequency	= 2 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 14,011 cuft
Inflow hyds.	= 5, 6	Contrib. drain. area	a = 2.240 ac


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 8

Post Route to Basin

Hydrograph type	 Reservoir 2 yrs 5 min 7 - Prop. Total to Old Cheesequake Basi 	Peak discharge	= 0.134 cfs
Storm frequency		Time to peak	= 935 min
Time interval		Hyd. volume	= 14,002 cuft
Inflow hyd. No.		n Max. Elevation	= 108.45 ft
Inflow hyd. No.	7 - Prop. Total to Old Cheesequake BasiDetention Basin	n Max. Elevation	= 108.45 ft
Reservoir name		Max. Storage	= 8,907 cuft

Storage Indication method used.

10

Pond Report

Hydraflow Hydrographs by Intelisolve v9.1

Pond No. 2 - Detention Basin

Pond Data

Contours - User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 105.50 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	105.50	00	0	0
0.50	106.00	2,235	372	372
1.50	107.00	3,415	2,804	3,176
2.50	108.00	4,085	3,745	6,921
3.50	109.00	4,795	4,435	11,356
4.50	110.00	5,495	5,141	16,496
5.50	111.00	6,285	5,885	22,381
6.50	112.00	7,080	6,678	29,059
7.40	112.90	8,050	6,803	35,862

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 15.00	1.75	3.25	0.00	Crest Len (ft)	= 22.00	20.00	0.00	0.00
Span (in)	= 15.00	1.75	3.25	0.00	Crest El. (ft)	= 111.50	111.50	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 105.50	105.50	109.00	0.00	Weir Type	= Broad	Rect		
Length (ft)	= 75.00	0.50	0.50	0.00	Multi-Stage	= No	Yes	No	No
Slope (%)	= 0.50	0.50	0.50	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage /	Storage /	Discharge	Table	
Stago	Storago	Elovation		<u> </u>

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	405 50	0.00	0.00	0.00		0.00	0.00					0.00
0.00	0	105.50	0.00	0.00	0.00		0.00	0.00					0.00
0.05	37	105.55	0.00 ic	0.00 ic	0.00		0.00	0.00					0.00
0.10	74	105.60	0.01 ic	0.01 ic	0.00		0.00	0.00					0.01
0.15	112	105.65	0.02 ic	0.02 ic	0.00		0.00	0.00					0.02
0.20	149	105.70	0.03 ic	0.03 ic	0.00		0.00	0.00					0.03
0.25	186	105.75	0.03 ic	0.03 ic	0.00		0.00	0.00					0.03
0.30	223	105.80	0.04 ic	0.04 ic	0.00		0.00	0.00					0.04
0.35	261	105.85	0.04 ic	0.04 ic	0.00		0.00	0.00					0.04
0.40	298	105.90	0.05 ic	0.04 ic	0.00		0.00	0.00					0.04
0.45	335	105.95	0.05 ic	0.05 ic	0.00		0.00	0.00					0.05
0.50	372	106.00	0.05 ic	0.05 ic	0.00		0.00	0.00					0.05
0.60	653	106.10	0.06 ic	0.06 ic	0.00		0.00	0.00					0.06
0.70	933	106.20	0.06 ic	0.06 ic	0.00		0.00	0.00					0.06
0.80	1,214	106.30	0.07 ic	0.07 ic	0.00		0.00	0.00					0.07
0.90	1,494	106.40	0.08 ic	0.07 ic	0.00		0.00	0.00					0.07
1.00	1,774	106.50	0.08 ic	0.08 ic	0.00		0.00	0.00					0.08
1.10	2,055	106.60	0.08 ic	0.08 ic	0.00		0.00	0.00					0.08
1.20	2,335	106.70	0.08 ic	0.08 ic	0.00		0.00	0.00					0.08
1.30	2,616	106.80	0.09 ic	0.09 ic	0.00		0.00	0.00					0.09
1.40	2,896	106.90	0.09 ic	0.09 ic	0.00		0.00	0.00					0.09
1.50	3,176	107.00	0.10 ic	0.09 ic	0.00		0.00	0.00					0.09
1.60	3,551	107.10	0.10 ic	0.10 ic	0.00		0.00	0.00					0.10
1.70	3,925	107.20	0.10 ic	0.10 ic	0.00		0.00	0.00					0.10
1.80	4,300	107.30	0.11 ic	0.10 ic	0.00		0.00	0.00					0.10
1.90	4,674	107.40	0.11 ic	0.11 ic	0.00		0.00	0.00					0.11
2.00	5,049	107.50	0.11 ic	0.11 ic	0.00		0.00	0.00					0.11
2.10	5,423	107.60	0.12 ic	0.11 ic	0.00		0.00	0.00					0.11
2.20	5,798	107.70	0.12 ic	0.12 ic	0.00		0.00	0.00					0.12
2.30	6,172	107.80	0.12 ic	0.12 ic	0.00		0.00	0.00					0.12
2.40	6,547	107.90	0.13 ic	0.12 ic	0.00		0.00	0.00					0.12
2.50	6,921	108.00	0.13 ic	0.12 ic	0.00		0.00	0.00					0.12
2.60	7,365	108.10	0.13 ic	0.12 ic	0.00		0.00	0.00					0.12
2.70	7,808	108.20	0.13 ic	0.13 ic	0.00		0.00	0.00					0.13
2.80	8,251	108.30	0.13 ic	0.13 ic	0.00		0.00	0.00					0.13
2.80	8,695	108.40	0.14 ic 0.14 ic	0.13 ic	0.00		0.00	0.00					0.13
2.00	0,000	100.40	5.1410	0.1010	0.00		0.00	0.00					

Weir Structures

Detention Basin Stage / Storage / Discharge Table

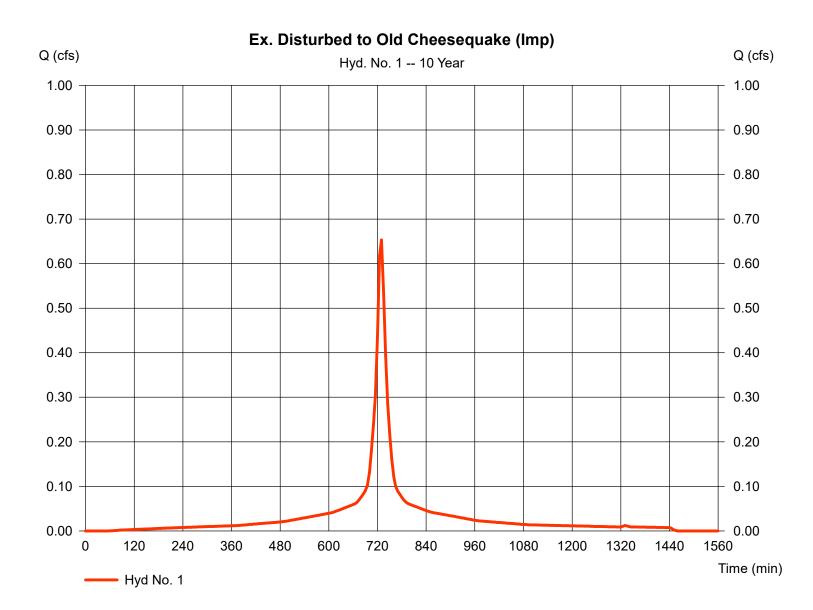
		je .	01 1	0 1 D	a . a								
Stage ft	Storage	Elevation	Clv A	Clv B	Clv C	PrfRsr	Wr A	Wr B	Wr C	Wr D	Exfil	User	Total
π	cuft	ft	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs
3.00	9,138	108.50	0.14 ic	0.14 ic	0.00		0.00	0.00					0.14
3.10	9,582	108.60	0.14 ic	0.14 ic	0.00		0.00	0.00					0.14
3.20	10,025	108.70	0.15 ic	0.14 ic	0.00		0.00	0.00					0.14
3.30	10,469	108.80	0.15 ic	0.14 ic	0.00		0.00	0.00					0.14
3.40	10,912	108.90	0.15 ic	0.14 ic	0.00		0.00	0.00					0.14
3.50	11,356	109.00	0.15 ic	0.15 ic	0.00		0.00	0.00					0.15
3.60	11,870	109.10	0.17 ic	0.15 ic	0.02 ic		0.00	0.00					0.17
3.70	12,384	109.20	0.23 ic	0.15 ic	0.02 ic		0.00	0.00					0.22
3.80	12,898	109.30	0.27 ic	0.15 ic	0.07 ic 0.11 ic		0.00	0.00					0.22
3.90	13,412	109.40	0.30 ic	0.15 ic	0.11 ic 0.14 ic		0.00	0.00					0.20
4.00	13,926	109.50	0.33 ic	0.16 ic	0.14 ic 0.17 ic		0.00	0.00					0.32
4.00	14,440	109.60	0.35 ic	0.16 ic	0.17 ic 0.19 ic		0.00	0.00					0.32
4.10	14,440	109.00	0.35 ic 0.37 ic	0.16 ic 0.16 ic	0.191c 0.21 ic		0.00	0.00					0.35
4.20	14,954	109.70	0.37 ic 0.39 ic	0.16 ic 0.16 ic	0.21 ic 0.23 ic		0.00	0.00					0.37
4.40	15,982	109.90	0.41 ic	0.16 ic	0.24 ic		0.00	0.00					0.41
4.50	16,496	110.00	0.43 ic	0.16 ic	0.26 ic		0.00	0.00					0.42
4.60	17,085	110.10	0.44 ic	0.17 ic	0.27 ic		0.00	0.00					0.44
4.70	17,673	110.20	0.46 ic	0.17 ic	0.29 ic		0.00	0.00					0.45
4.80	18,262	110.30	0.48 ic	0.17 ic	0.30 ic		0.00	0.00					0.47
4.90	18,850	110.40	0.48 ic	0.17 ic	0.31 ic		0.00	0.00					0.48
5.00	19,439	110.50	0.51 ic	0.17 ic	0.32 ic		0.00	0.00					0.50
5.10	20,027	110.60	0.51 ic	0.18 ic	0.34 ic		0.00	0.00					0.51
5.20	20,616	110.70	0.53 ic	0.18 ic	0.35 ic		0.00	0.00					0.52
5.30	21,204	110.80	0.54 ic	0.18 ic	0.36 ic		0.00	0.00					0.54
5.40	21,793	110.90	0.56 ic	0.18 ic	0.37 ic		0.00	0.00					0.55
5.50	22,381	111.00	0.56 ic	0.18 ic	0.38 ic		0.00	0.00					0.56
5.60	23,049	111.10	0.59 ic	0.18 ic	0.39 ic		0.00	0.00					0.57
5.70	23,717	111.20	0.59 ic	0.19 ic	0.40 ic		0.00	0.00					0.58
5.80	24,385	111.30	0.61 ic	0.19 ic	0.41 ic		0.00	0.00					0.60
5.90	25,053	111.40	0.61 ic	0.19 ic	0.42 ic		0.00	0.00					0.61
6.00	25,720	111.50	0.62 ic	0.19 ic	0.43 ic		0.00	0.00					0.62
6.10	26,388	111.60	2.75 oc	0.18 ic	0.44 ic		2.32	2.11					5.04
6.20	27,056	111.70	6.56 oc	0.16 ic	0.44 ic		6.55	5.96					13.11
6.30	27,724	111.80	11.33 oc	0.09 ic	0.30 ic		12.04	10.94					23.37
6.40	28,391	111.90	12.72 oc	0.03 ic	0.10 ic		18.53	12.59 s					31.26
6.50	29,059	112.00	12.92 oc	0.02 ic	0.07 ic		25.90	12.82 s					38.82
6.59	29,740	112.09	13.05 oc	0.02 ic	0.06 ic		33.20	12.97 s					46.25
6.68	30,420	112.18	13.17 oc	0.01 ic	0.05 ic		41.08	13.10 s					54.24
6.77	31,100	112.27	13.28 oc	0.01 ic	0.04 ic		49.50	13.21 s					62.77
6.86	31,781	112.36	13.39 oc	0.01 ic	0.03 ic		58.43	13.32 s					71.79
6.95	32,461	112.45	13.50 oc	0.01 ic	0.03 ic		67.83	13.44 s					81.32
7.04	33,141	112.54	13.60 oc	0.01 ic	0.03 ic		77.70	13.56 s					91.30
7.13	33,821	112.63	13.70 oc	0.01 ic	0.02 ic		88.00	13.67 s					101.70
7.22	34,502	112.72	13.80 oc	0.01 ic	0.02 ic		98.72	13.70 s					112.45
7.31	35,182	112.81	13.90 oc	0.01 ic	0.02 ic		109.84	13.86 s					123.73
7.40	35,862	112.90	14.00 oc	0.01 ic	0.02 ic		121.36	13.87 s					135.25
1.10	00,002	112.00	1.00.00	5.0110	5.02 10		121.00	10.01 0					.00.20

...End

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

13

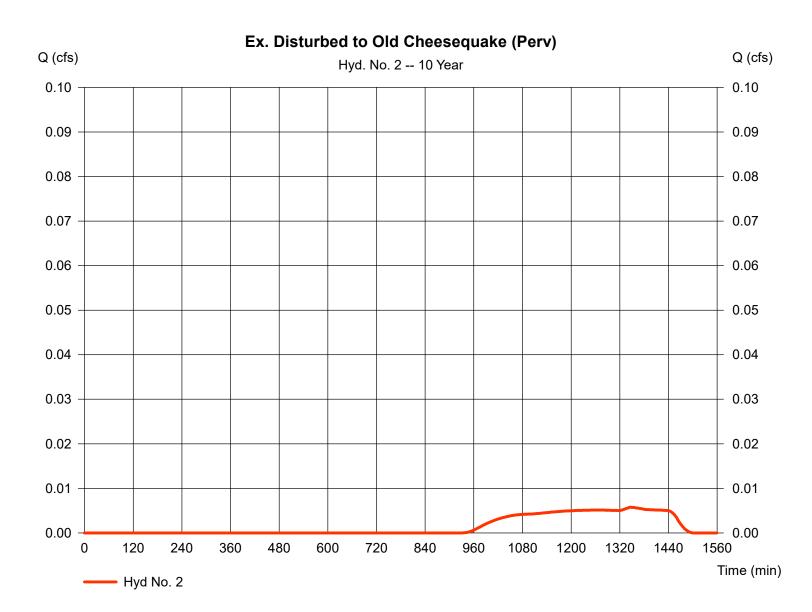

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	0.653	5	730	2,991				Ex. Disturbed to Old Cheesequake (I
2	SCS Runoff	0.006	5	1345	137				Ex. Disturbed to Old Cheesequake (P
3	Combine	0.653	5	730	3,128	1, 2			Ex. Disturbed to Old Cheesequake To
5	SCS Runoff	4.791	5	730	21,935				Prop. to Old Cheesequake Basin (Im
6	SCS Runoff	0.038	5	750	704				Prop. to Old Cheesequake Basin (Pe
7	Combine	4.791	5	730	22,639	5, 6			Prop. Total to Old Cheesequake Basi
8	Reservoir	0.317	5	865	22,629	7	109.48	13,804	Post Route to Basin
2, 1	0, 25, 100 YF	R.gpw			Return F	Period: 10 Y	⁄ear	Wednesda	y, Mar 2, 2022

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 1

Ex. Disturbed to Old Cheesequake (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.653 cfs
Storm frequency	= 10 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 2,991 cuft
Drainage area	= 0.180 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.12 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484
		-	

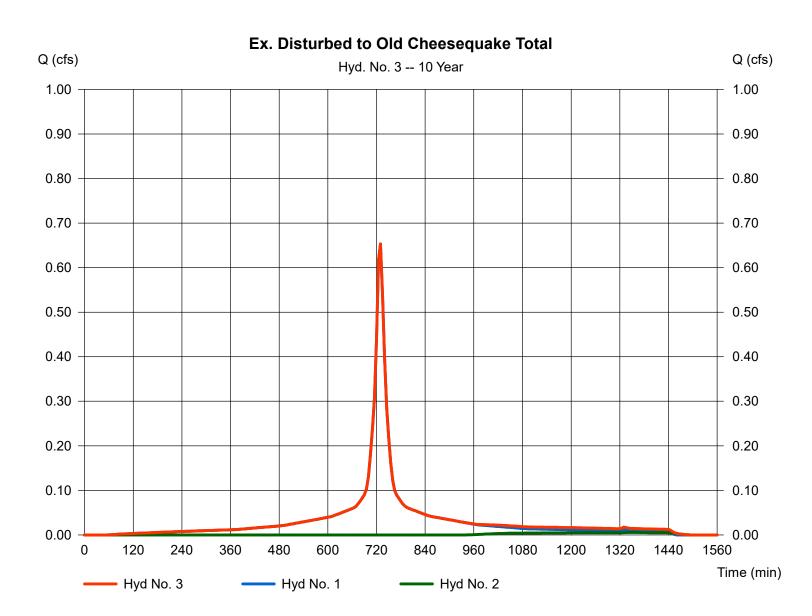


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

Ex. Disturbed to Old Cheesequake (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.006 cfs
Storm frequency	= 10 yrs	Time to peak	= 1345 min
Time interval	= 5 min	Hyd. volume	= 137 cuft
Drainage area	= 1.990 ac	Curve number	= 31
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 37.00 min
Total precip.	= 5.12 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

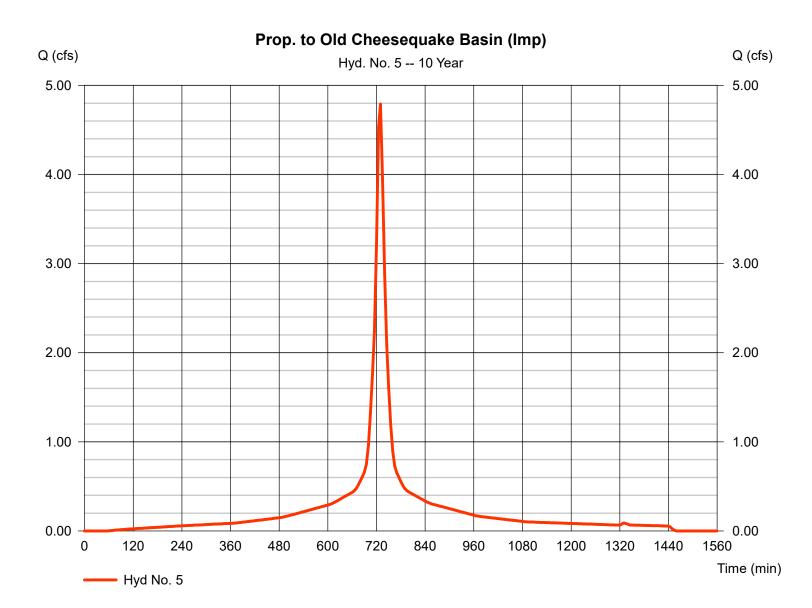


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

Ex. Disturbed to Old Cheesequake Total

Hydrograph type	= Combine	Peak discharge	= 0.653 cfs
Storm frequency	= 10 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 3,128 cuft
Inflow hyds.	= 1,2	Contrib. drain. area	a = 2.170 ac



Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 5

Prop. to Old Cheesequake Basin (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.791 cfs
Storm frequency	= 10 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 21,935 cuft
Drainage area	= 1.320 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.12 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

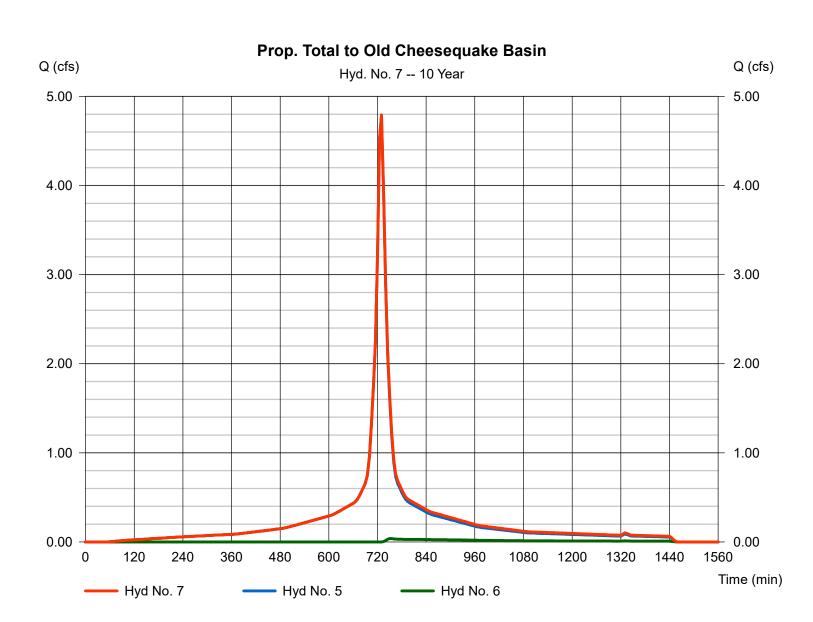
17

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 6

Prop. to Old Cheesequake Basin (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.038 cfs
Storm frequency	= 10 yrs	Time to peak	= 750 min
Time interval	= 5 min	Hyd. volume	= 704 cuft
Drainage area	= 0.920 ac	Curve number	= 39
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.12 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

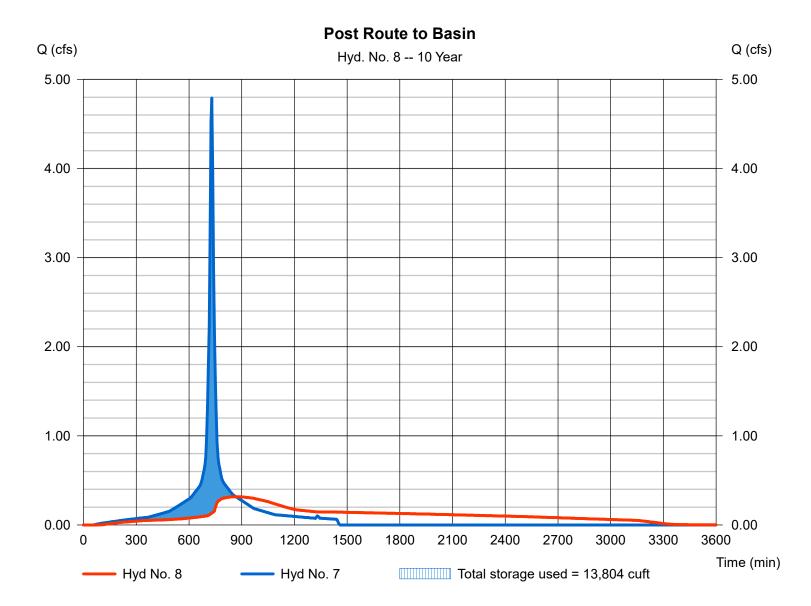


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 7

Prop. Total to Old Cheesequake Basin

Hydrograph type	= Combine	Peak discharge	= 4.791 cfs
Storm frequency	= 10 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 22,639 cuft
Inflow hyds.	= 5,6	Contrib. drain. area	a = 2.240 ac


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 8

Post Route to Basin

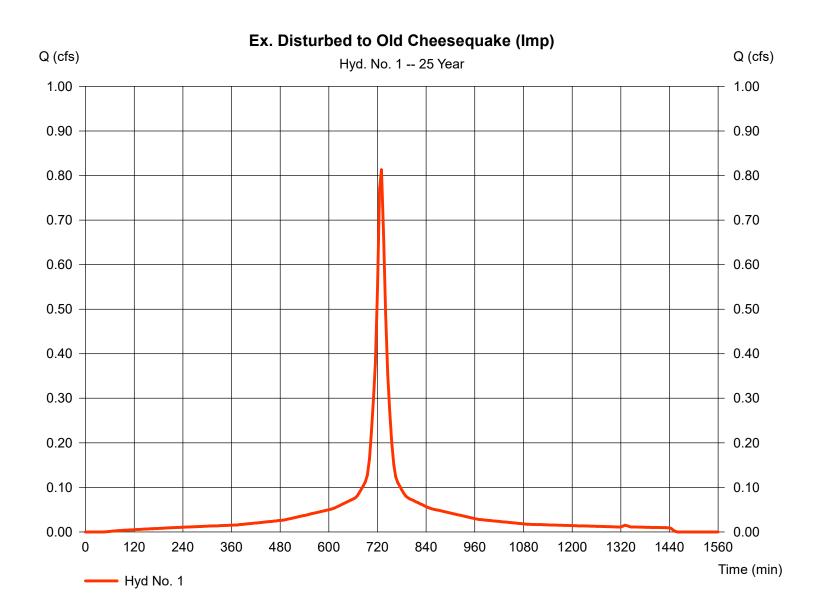
Hydrograph type	 Reservoir 10 yrs 5 min 7 - Prop. Total to Old Cheesequake Basi 	Peak discharge	= 0.317 cfs
Storm frequency		Time to peak	= 865 min
Time interval		Hyd. volume	= 22,629 cuft
Inflow hvd. No.		in Max. Elevation	= 109.48 ft
Inflow hyd. No.	7 - Prop. Total to Old Cheesequake BasiDetention Basin	n Max. Elevation	= 109.48 ft
Reservoir name		Max. Storage	= 13,804 cuft

Storage Indication method used.

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

21

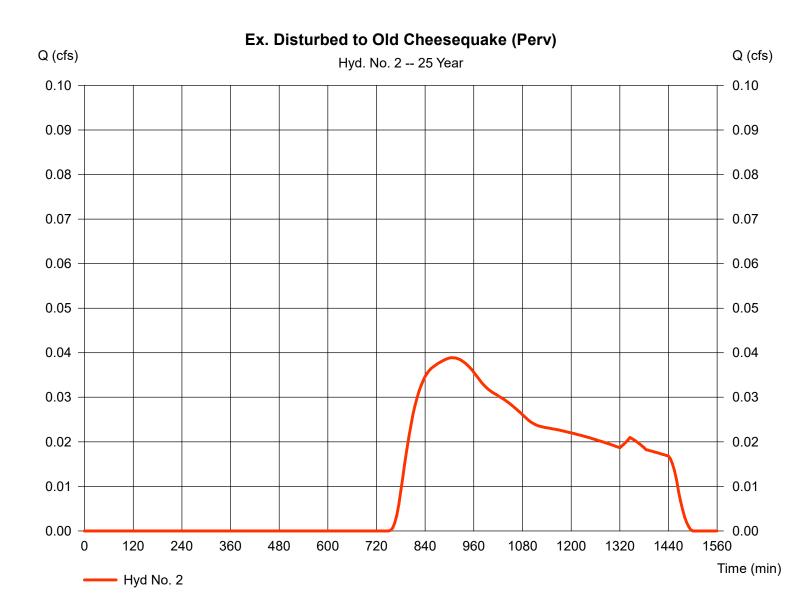

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	0.813	5	730	3,750				Ex. Disturbed to Old Cheesequake (I
2	SCS Runoff	0.039	5	905	1,061				Ex. Disturbed to Old Cheesequake (P
3	Combine	0.813	5	730	4,811	1, 2			Ex. Disturbed to Old Cheesequake To
5	SCS Runoff	5.963	5	730	27,498				Prop. to Old Cheesequake Basin (Im
6	SCS Runoff	0.203	5	740	1,732				Prop. to Old Cheesequake Basin (Pe
7	Combine	6.074	5	730	29,231	5, 6			Prop. Total to Old Cheesequake Bas
8	Reservoir	0.449	5	850	29,221	7	110.16	17,463	Post Route to Basin
2 1	0, 25, 100 YF	R apw			Return F	Period: 25 Y	/ear	Wednesda	y, Mar 2, 2022

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 1

Ex. Disturbed to Old Cheesequake (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.813 cfs
Storm frequency	= 25 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 3,750 cuft
Drainage area	= 0.180 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 6.36 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

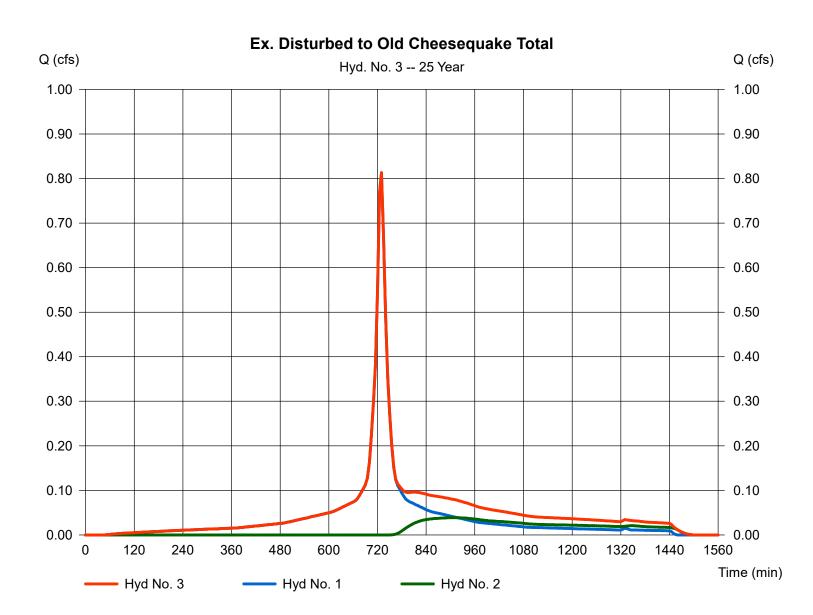


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

Ex. Disturbed to Old Cheesequake (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.039 cfs
Storm frequency	= 25 yrs	Time to peak	= 905 min
Time interval	= 5 min	Hyd. volume	= 1,061 cuft
Drainage area	= 1.990 ac	Curve number	= 31
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 37.00 min
Total precip.	= 6.36 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

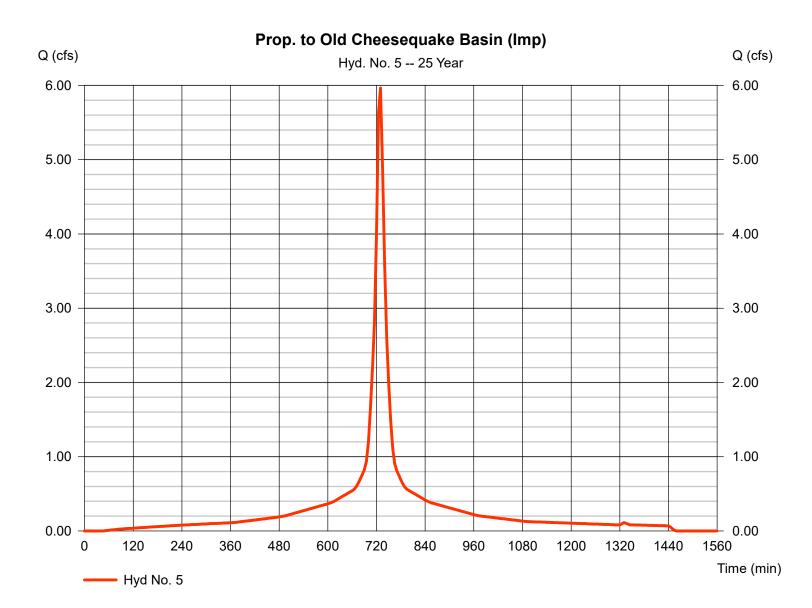


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

Ex. Disturbed to Old Cheesequake Total

Hydrograph type	= Combine	Peak discharge	= 0.813 cfs
Storm frequency	= 25 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 4,811 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	a = 2.170 ac

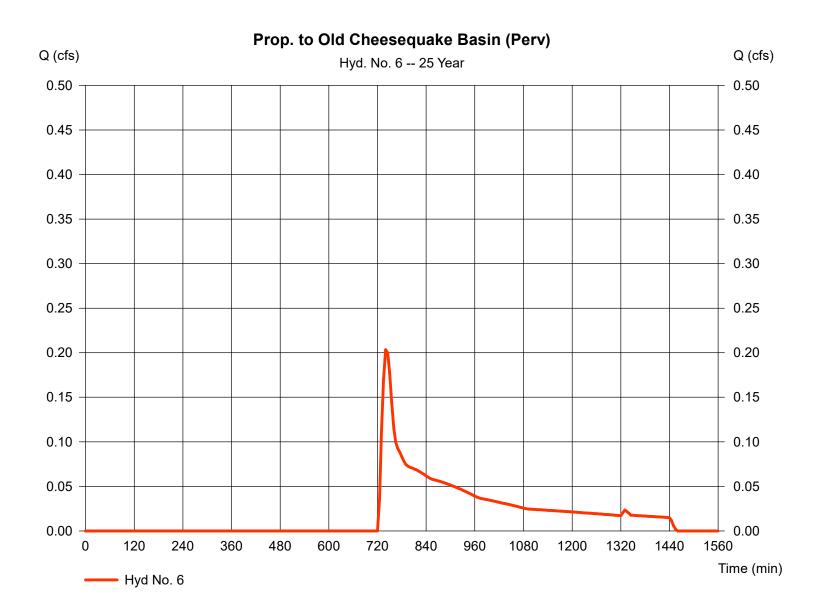

24

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 5

Prop. to Old Cheesequake Basin (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 5.963 cfs
Storm frequency	= 25 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 27,498 cuft
Drainage area	= 1.320 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 6.36 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484
		-	

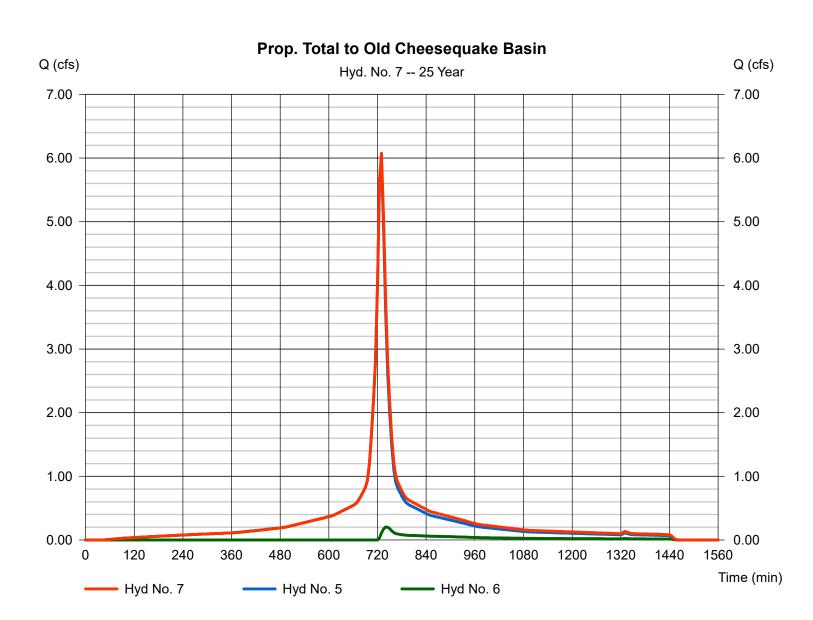


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 6

Prop. to Old Cheesequake Basin (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.203 cfs
Storm frequency	= 25 yrs	Time to peak	= 740 min
Time interval	= 5 min	Hyd. volume	= 1,732 cuft
Drainage area	= 0.920 ac	Curve number	= 39
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 6.36 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484
		·	

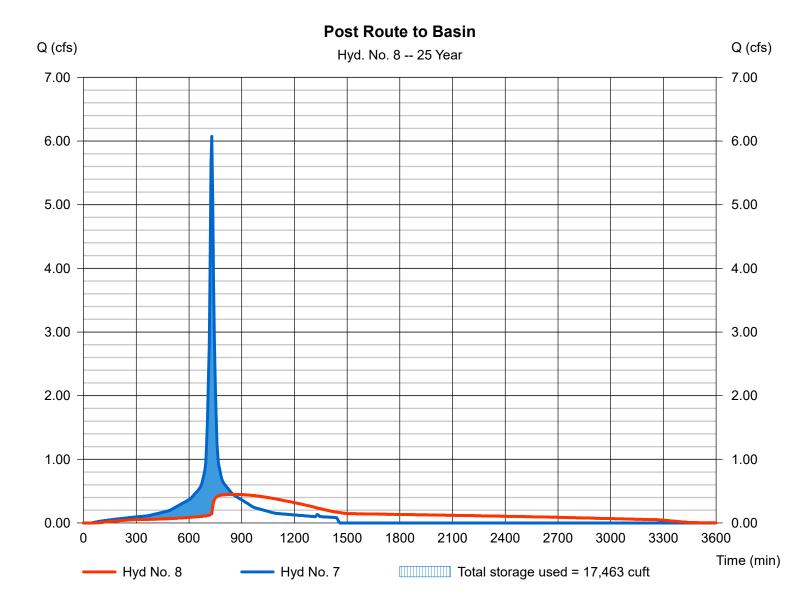

26

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 7

Prop. Total to Old Cheesequake Basin

Hydrograph type Storm frequency	= Combine = 25 yrs	Peak discharge Time to peak	= 6.074 cfs = 730 min
Time interval	= 5 min	Hyd. volume	= 29,231 cuft
Inflow hyds.	= 5, 6	Contrib. drain. area	a = 2.240 ac


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 8

Post Route to Basin

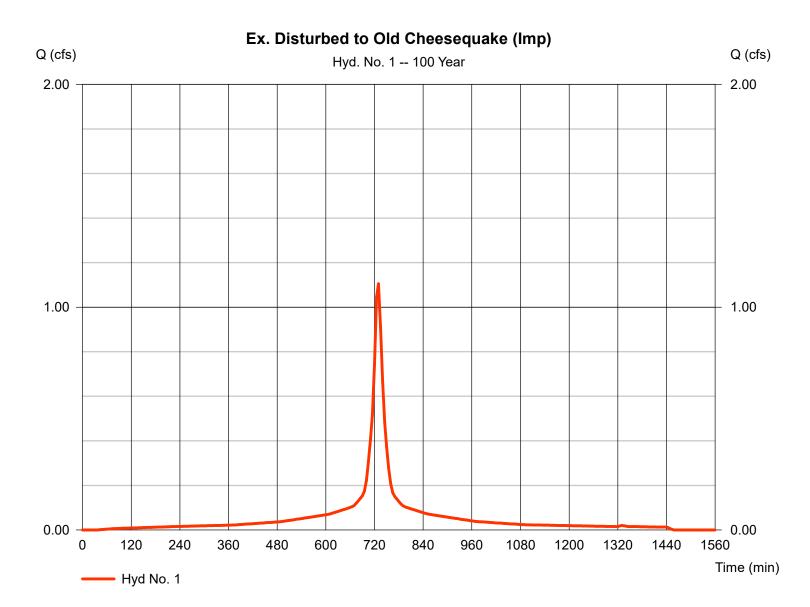
Reservoir	Peak discharge	= 0.449 cfs
25 yrs	Time to peak	= 850 min
5 min	Hyd. volume	= 29,221 cuft
7 - Prop. Total to Old Cheesequake Basin	Max. Elevation	= 110.16 ft
Detention Basin	Max. Storage	= 17,463 cuft
	25 yrs 5 min 7 - Prop. Total to Old Cheesequake Basin	25 yrs Time to peak 5 min Hyd. volume 7 - Prop. Total to Old Cheesequake Basin Max. Elevation

Storage Indication method used.

28

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.1

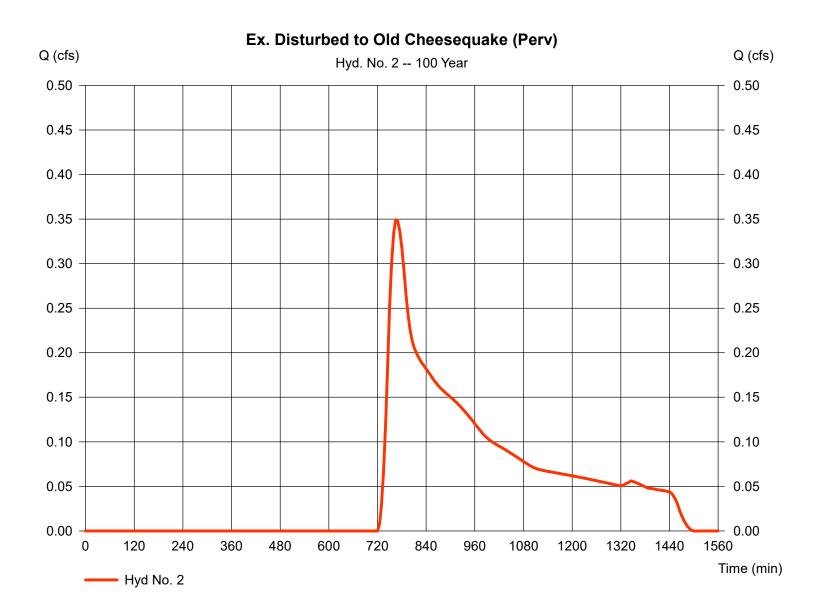

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	1.105	5	730	5,139				Ex. Disturbed to Old Cheesequake (I
2	SCS Runoff	0.349	5	765	4,645				Ex. Disturbed to Old Cheesequake (P
3	Combine	1.134	5	730	9,785	1, 2			Ex. Disturbed to Old Cheesequake To
5	SCS Runoff	8.105	5	730	37,688				Prop. to Old Cheesequake Basin (Im
6	SCS Runoff	0.826	5	735	4,482				Prop. to Old Cheesequake Basin (Pe
7	Combine	8.911	5	730	42,170	5, 6			Prop. Total to Old Cheesequake Bas
8	Reservoir	0.616	5	865	42,160	7	111.49	25,621	Post Route to Basin
	0, 25, 100 YF				Doturn F	Period: 100	Voor	\M/odpoode	y, Mar 2, 2022

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 1

Ex. Disturbed to Old Cheesequake (Imp)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.105 cfs
Storm frequency	= 100 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 5,139 cuft
Drainage area	= 0.180 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 8.63 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

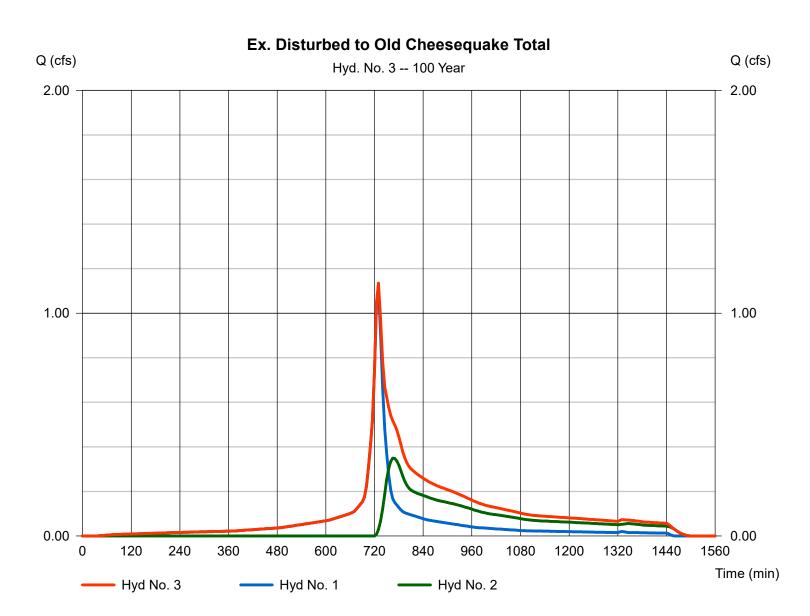

30

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

Ex. Disturbed to Old Cheesequake (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.349 cfs
Storm frequency	= 100 yrs	Time to peak	= 765 min
Time interval	= 5 min	Hyd. volume	= 4,645 cuft
Drainage area	= 1.990 ac	Curve number	= 31
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 37.00 min
Total precip.	= 8.63 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

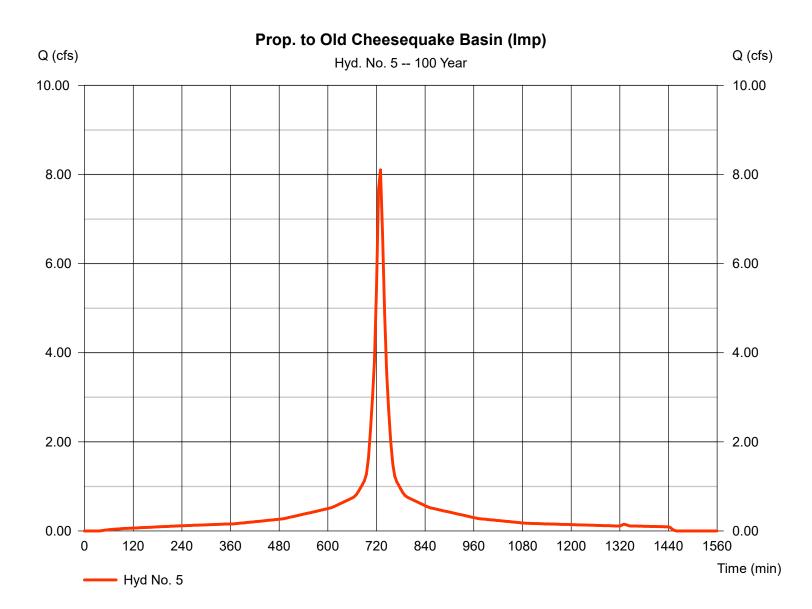


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 3

Ex. Disturbed to Old Cheesequake Total

Hydrograph type	= Combine	Peak discharge	= 1.134 cfs
Storm frequency	= 100 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 9,785 cuft
Inflow hyds.	= 1,2	Contrib. drain. area	a = 2.170 ac



Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 5

Prop. to Old Cheesequake Basin (Imp)

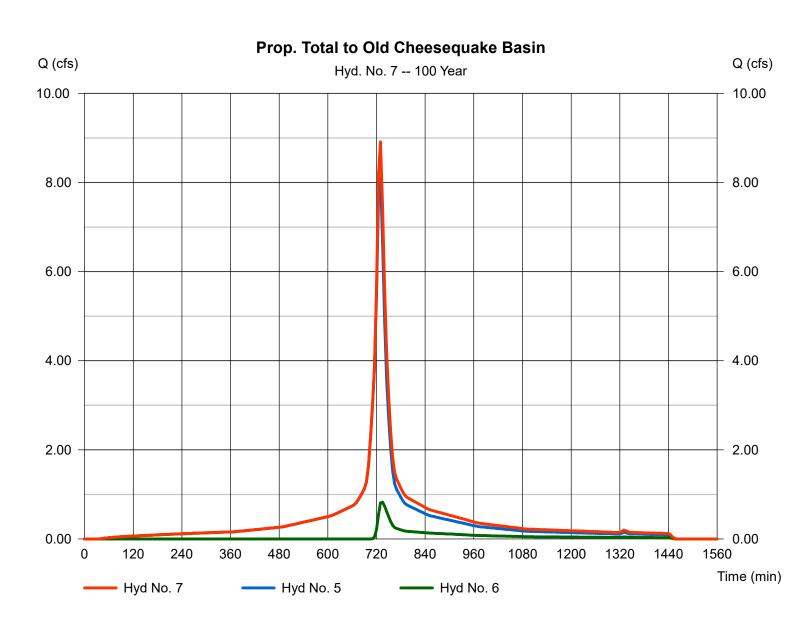
Hydrograph type	= SCS Runoff	Peak discharge	= 8.105 cfs
Storm frequency	= 100 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 37,688 cuft
Drainage area	= 1.320 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 8.63 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484
		-	

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 6

Prop. to Old Cheesequake Basin (Perv)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.826 cfs
Storm frequency	= 100 yrs	Time to peak	= 735 min
Time interval	= 5 min	Hyd. volume	= 4,482 cuft
Drainage area	= 0.920 ac	Curve number	= 39
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 8.63 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484
		·	

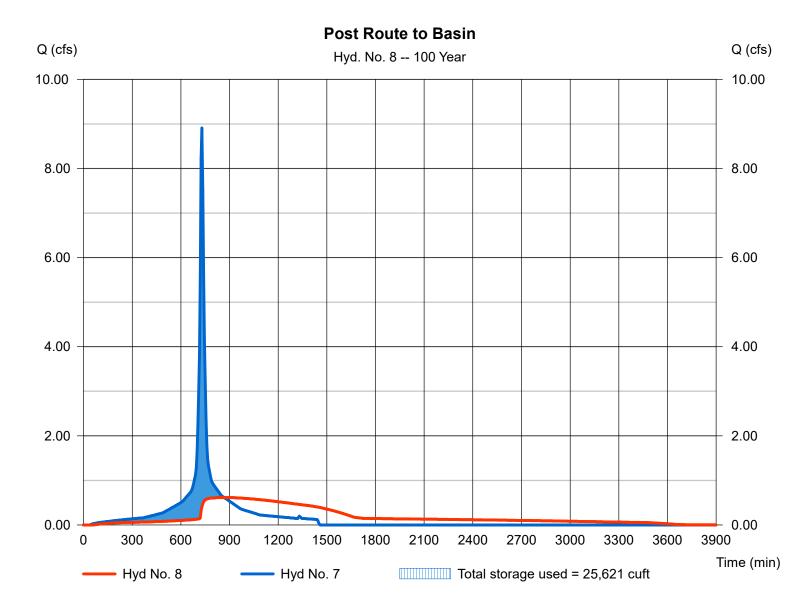

34

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 7

Prop. Total to Old Cheesequake Basin

Hydrograph type	= Combine	Peak discharge	= 8.911 cfs
Storm frequency	= 100 yrs	Time to peak	= 730 min
Time interval	= 5 min	Hyd. volume	= 42,170 cuft
Inflow hyds.	= 5, 6	Contrib. drain. area	a = 2.240 ac


Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 8

Post Route to Basin

Hydrograph type	= Reservoir	Peak discharge	= 0.616 cfs
Storm frequency	= 100 yrs	Time to peak	= 865 min
Time interval	= 5 min	Hyd. volume	= 42,160 cuft
Inflow hyd. No.	= 7 - Prop. Total to Old Cheesequake Bas	in Max. Elevation	= 111.49 ft
Reservoir name	= Detention Basin	Max. Storage	= 25,621 cuft

Storage Indication method used.

Hydraflow Rainfall Report

Hydraflow Hydrographs by Intelisolve v9.1

Return Period	Intensity-I	Duration-Frequency	Equation Coefficient	s (FHA)
(Yrs)	В	D	E	(N/A)
1	39.0824	9.5000	0.8528	
2	45.6943	10.7000	0.8185	
3	0.0000	0.0000	0.0000	
5	99.7061	14.8000	0.9304	
10	249.7597	21.8001	1.0961	
25	115.7547	14.9000	0.8980	
50	7.3699	0.1000	0.2544	
100	403.8513	25.1001	1.1108	

File name: TRENTON.idf

Intensity = B / (Tc + D)^E

Return Period		Intensity Values (in/hr)										
(Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	4.00	3.10	2.55	2.18	1.91	1.70	1.54	1.40	1.29	1.20	1.12	1.05
2	4.80	3.83	3.21	2.77	2.45	2.20	2.00	1.84	1.70	1.59	1.49	1.40
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.20	5.03	4.24	3.67	3.24	2.90	2.63	2.40	2.22	2.06	1.92	1.80
10	6.80	5.63	4.80	4.17	3.69	3.30	2.98	2.72	2.50	2.31	2.14	2.00
25	7.89	6.45	5.47	4.76	4.23	3.80	3.46	3.17	2.93	2.73	2.55	2.40
50	4.87	4.09	3.69	3.44	3.25	3.10	2.98	2.88	2.80	2.72	2.66	2.60
100	9.20	7.76	6.69	5.87	5.22	4.70	4.27	3.91	3.60	3.33	3.10	2.90

Tc = time in minutes. Values may exceed 60.

		Rainfall Precipitation Table (in)						
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	0.00	3.35	0.00	0.00	5.12	6.36	0.00	8.63
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	1.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Precip. file name: Middlesex County NRCS.pcp

37

Hydraflow Table of Contents

Wednesday,	Mar 2	2022
weanesday,	iviar Z,	2022

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

2 - Year

3
4
4
5
6
7
8
9
0
1

10 - Year

13 14
14
15
16
17
19
20

25 - Year

Summary Report	21
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Ex. Disturbed to Old Cheesequake (Imp)	22
Hydrograph No. 2, SCS Runoff, Ex. Disturbed to Old Cheesequake (Perv)	23
Hydrograph No. 3, Combine, Ex. Disturbed to Old Cheesequake Total	24
Hydrograph No. 5, SCS Runoff, Prop. to Old Cheesequake Basin (Imp)	25
Hydrograph No. 6, SCS Runoff, Prop. to Old Cheesequake Basin (Perv)	26
Hydrograph No. 7, Combine, Prop. Total to Old Cheesequake Basin	27
Hydrograph No. 8, Reservoir, Post Route to Basin	28

100 - Year

Summary Report	29
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Ex. Disturbed to Old Cheesequake (Imp)	
Hydrograph No. 2, SCS Runoff, Ex. Disturbed to Old Cheesequake (Perv)	31
Hydrograph No. 3, Combine, Ex. Disturbed to Old Cheesequake Total	
Hydrograph No. 5, SCS Runoff, Prop. to Old Cheesequake Basin (Imp)	33
Hydrograph No. 6, SCS Runoff, Prop. to Old Cheesequake Basin (Perv)	34
Hydrograph No. 7, Combine, Prop. Total to Old Cheesequake Basin	35
Hydrograph No. 8, Reservoir, Post Route to Basin	